
SUPPLEMENTARY METHODS 

Design and construction of gRNA library 

gRNA sequences were designed to target the 5’ exons of genes according to standard 

protocols that reduce off target effects and target common exons between gene isoforms 

(1-3).  gRNAs were cloned into the pLKO2 (Sigma; SHC201) lentiviral plasmid as 

oligonucleotides or by site directed mutagenesis of 19-mer sequences (Genscript).  Each 

gRNA clone was sequence verified. 

 

Lentivirus production and infection 

Lentivirus production and infection was carried out as previously described (4). For high 

throughput production of the gRNA library, lentivirus was generated in 96-well plates. 

293T cells were seeded at 55,000 cells/well 18 hours prior to transfection.  Cells were 

subsequently transfected with the pLKO2-gRNA constructs along with pCMV-VSVG 

and pCMV-Δ8.9 using Lipofectime 2000 (Invitrogen).  Six hours after transfection, the 

media was changed to 200 µl of fresh growth media. Viral supernatant was harvested 48 

hours after transfection.   

For RNAi experiments involving constitutive BRD4 and cMYC knockdown, the 

following pLKO-shRNA target sequences were utilized: shNTC (Sigma: SHC002), 

shBRD4-1 (CCAACCAAAGTCAGTTCCTTC), shBRD4-2 

(CAGTGACAGTTCGACTGATGA), shBRD4-3 (GCCTATGTCCTATGAGGAGAA), 

shMYC-1 (CCTGAGACAGATCAGCAACAA), and shMYC-2 

(CGCAGGTGTCAAATGGATAAT).  Infected cells were selected with 2 µg/ml 



puromycin 48 hours after transduction and harvested for immunoblot (3.5 days) or 

monitored for cell proliferation with CellTiter-Glo (Promega; 6 days).    

 

CRISPR high throughput arrayed cell viability screen 

RKO-Cas9 cells were seeded (750 cells/well) 18 hours prior to infection in 96 well plates 

in media containing 8 µg/ml polybrene.  Virus particles were added to cells at an average 

MOI of 3-5 and spin infected at room temperature (1800 rpm, 30 minutes).  Stable 

integration of gRNAs was selected with 2 µg/ml puromycin starting 48 hours after 

infection.  The primary screen was performed in duplicate for cells receiving puromycin 

and in singlet for cells not receiving puromycin.  Cell proliferation was measured 7 days 

after infection using CellTiter-Glo (Promega).  Negative controls (Firefly Luciferase 

gRNAs) and positive controls (PLK1 gRNAs) were present on each plate.  

Data was normalized on each plate by dividing CTG values of each experimental gRNA 

by the average of 8 Luciferase gRNA controls that were on the same plate. Z scores were 

calculated from non-targeting control normalized values.  PLK1 and Luciferase gRNA 

controls were not included for Z score calculations.  Hit criteria were established using 

the following guidelines: 1 gRNA with a Z score < -2 and an additional gRNA with a Z 

score < -1.5. 

 

Generation of BRD4 clonal knockout cells using CRISPR 

CRISPR knockout clones were generated similarly to that described (5).  Briefly, BRD4 

gRNAs (target sequences: TTGGTACCGTGGAAACGCC and 

AAGATCATTAAAACGCCTA) were co-transfected with Cas9 using Lipofectamine 



LTX (Invitrogen) to generate BRD4 knockout cells.  Untransfected cells were eliminated 

with a 24 hour Puromycin treatment (2 µg/ml) two days after transfection.  Clonal 

populations were isolated by FACS in 96 well format, screened by immunofluorescence 

(using Epitomics: 5716-1 antibody) and validated by immunoblot.  For BRD4 long-

isoform truncation experiments, a different gRNA (target sequence: 

AAAGAAGGGGCACCCCGGG) was utilized.  Knockout cells were screened by 

immunofluorescence (using Bethyl: A301-985A100) and confirmed by immunoblot.	  	  

Homozygous	  deletion	  frequency	  ranged	  from	  10-‐40%	  depending	  on	  cell	  line	  and	  

gRNA.	  	   

	  
Identification of genomic features predictive for JQ1 sensitivity 

Using EC50 values as a measure for the response to JQ1 treatment, we defined cell lines 

as sensitive or resistant based on a 30%- and 70%-quantile cutoff, respectively. To create 

genomic feature profiles for the classified sensitive (ATRFLOX, HT-29, RKO, CW-2, 

HCT-15, SW 48) and resistant (LS-180, SW 480, LS-174T, GP5d, SW 948, COLO 741) 

cell lines, total copy number (26,347 features), expression (26,225 features) and mutation 

(314 features) data were retrieved (6). The DESeq R package was applied to estimate size 

factors and obtain dispersion estimates for the associated RNA-seq data (7). Gene 

expression was quantified with variance-stabilized counts. DNA methylation data from 

Illumina microarrays yielded additional 35,788 features per cell line. For	  each	  transcript,	  

the	  promoter	  region	  was	  identified	  (-‐2000	  bp	  to	  +	  500	  bp	  around	  the	  transcriptional	  

start	   site)	   and	   the	   mean	   expression	   across	   all	   contained	   probes	   was	   calculated	  

(mean	   M-‐score).	   For both expression and methylation data, we restricted our 

classification approach to the 2000 most variable instances. Furthermore, 14 different 



measures for CIMP classification including established gene expression signatures (8) 

were employed.  EMT and MSI status, doubling time, seeding density and alteration 

status of canonical pathways formed eight additional features.  

We applied the Lasso approach to identify the most reliable features for predicting 

either the class or the underlying EC50 values of sensitive versus resistant lines (9). 

Using the ‘cv.glmnet’ function from the R package glmnet, we trained lasso based 

models and used 10-fold cross validations to determine tuning parameter λ yielding 

minimum cross-validated errors. Features were defined as reliable for predicting JQ1 

sensitivity, if the associated β coefficients were not zero. 

 

RNA sequencing and analysis 

Cells were treated for 24 hours with DMSO or 0.5 µM JQ1 in triplicate.  For shRNA 

experiments cells were treated for 3.5 days with 0.5 µg/ml doxycycline.  Total RNA was 

isolated with the Qiagen RNAeasy kit and subjected to oligo (dT) capture and enrichment.  

The resulting mRNA fraction was used to construct complementary DNA libraries and 

Transcriptome sequencing (RNA-seq) was performed as described (10). For analysis of 

differentially expressed genes, the following cutoffs were used: 2 fold change, median 

RPKM >0.1, and adjusted p value < 0.01. 

 

Gene set enrichment analysis (GSEA) 

GSEA (http://www.broadinstitute.org/gsea/index.jsp) (11) was performed using 

JQ1/DMSO log2 fold change for each cell line. CIMP(+) classified cell lines (n=4) were 



compared to CIMP(-) classified cell lines (n=2) using difference of classes as the ranking 

metric and the Hallmark MSigDB gene set collection. An FDR cutoff of 5% was used. 

Gene expression analysis 

For qRT-PCR experiments total RNA was isolated with the RNeasy mini kit (Qiagen). 

Reverse transcription followed by qPCR was performed with the TaqMan one-step RT-

PCR master mix (Applied Biosystems). Samples were normalized to expression of 

GAPDH mRNA.   

 
ChIP-sequencing and analysis 
 
Cells were fixed with 1% formaldehyde for 5-15 minutes and quenched with 0.125 M 

glycine. Chromatin was sonicated to an average length of 100-500 bp. H3K27ac ChIP 

was performed using 2 µg of rabbit anti-H3K27ac antibody (Abcam, ab4729, Lot: 

GR183919-2) with the Diagenode LowCell# ChIP kit with minor modifications. BRD4 

ChIP was performed using 30 µg of precleared chromatin and 4 µg of antibody against 

BRD4 (Bethyl Laboratories, A301-895, Lot. A301-985A100-3). 200 ng of Drosophila S2 

chromatin and 0.4 µg of drosophila-specific H2A.v antibody (Active Motif: 39715) were 

also added to each reaction for normalization purposes. Complexes were washed and 

eluted from beads with SDS buffer. ChIP and input samples were subjected to RNase and 

proteinase K treatment. Crosslinks were reversed by incubation at 65°C and DNA was 

purified. 

For BRD4 ChIP-qPCR, qPCR was performed on ChIP and input DNA with 

TaqMan Universal PCR Master Mix (Applied Biosystems) with custom designed primers 

and probe for CCAT1 (forward: 5’- CAAAGGTCCCAATTTCACACT; reverse: 5’- 

ACAACTGTGCTCCTGAATGC; probe: 5’-TCCAGTTGGGTTCTCTTTCCTTTGCT) 



and a negative control locus on chromosome 4 (forward: 5’- 

GATGGCCCAGTGTAAGCATT; reverse: 5’- TGACTCTGACGATAGCTCTCAAA; 

probe: 5’- AATGTCCTAGTTTCATAAATTACGGTCACTCTATCTGG). 

 Illumina sequencing libraries were prepared from the ChIP and Input DNAs by 

the standard consecutive enzymatic steps of end-polishing, dA-addition, and adaptor 

ligation. After a final PCR amplification step, the resulting DNA libraries were quantified 

and sequenced on a HiSeq2500 or a NexSeq 500 (75 bp, single end reads). 

 Bioinformatics analysis includes de-multiplexing and filtering followed by 

alignment to the human genome (hg19) using the BWA algorithm (default settings) (12). 

Duplicate reads were removed. For H3K27ac ChIP-seq, uniquely mapped reads were 

normalized for total read number per sample by random downsampling. For BRD4 ChIP-

seq normalization to drosophila chromatin spike was performed as follows. Reads were 

aligned to the Drosophila genome (dm3) using the BWA algorithm (default settings). 

Normalization was performed by equalizing the Drosophila tag counts across all samples 

so that the final tag counts were based off of the sample containing the lowest number 

of Drosophila tags. Then the human tags counts for all samples were proportionally 

scaled based on the ratios used to adjust the drosophila tag counts. Scaling to the target 

tag number was performed by randomly removing excess tags.  

 To identify super-enhancers, peak locations for BRD4 were determined using the 

MACS algorithm (v1.4.2) (13) with a cutoff of p-value = 1x107. MACS peak locations 

and BAM files were used as input into the ROSE software to identify super-enhancers 

(14, 15). The default stitching distance of 12.5 kb was used and promoters were not 



excluded. Super-enhancers were annotated to genes if they fell within 50 kb upstream or 

downstream of the gene.  

Heatmap representation of drosophila chromatin normalized BRD4 binding at 

super-enhancer regions was generated using seqplots 

(http://github.com/przemol/seqplots). Overlapping super-enhancer regions were grouped 

into active regions defined by the most upstream start position and the most downstream 

end position (the union of overlapping intervals). When a super-enhancer was present in 

only one cell line the active region was defined by that interval.  

To calculate input-normalized and averaged ChIP-seq signal, coverage was 

calculated across 10 bp bins using BEDTools (16) and the ratio of ChIP/input across bins 

was used directly or averaged across CIMP(+) and CIMP(-) lines. Tracks were visualized 

in the Integrative Genomics Viewer (IGV) (17, 18) (http://www.broadinstitute.org/igv/). 

 

Human tissues 

To evaluate CCAT1 expression, a population-based series of patients who had undergone 

surgical resections for colorectal adenocarcinoma was compiled retrospectively from the 

pathology archives at St James' University Hospital (Leeds, UK) from 1988 to 2003. 

Patient demographics and treatment information were obtained from clinical records. 

Morphology, site, Dukes' stage, grade of differentiation, number of lymph nodes 

retrieved and number of positive lymph nodes were compiled from the surgical pathology 

reports. Survival data were obtained from the Northern and Yorkshire Cancer Registry 

and Information Service (St James' University Hospital; Leeds, UK). Inclusion of patients 

into this cohort was dependent on the availability of archival material and outcome data. 



TMAs were constructed as above with one core of normal mucosa and three cores of 

adenocarcinoma per patient.  

 

Biostatistical analysis of Leeds tumor collection 

Patients were classified as CCAT1+ if their CCAT1 ISH score was >1 and CCAT1- 

otherwise.  Any patients with missing CCAT1 expression score were removed from the 

analysis. Patients with tumor location specified as ‘ASCENDING COLON’, ‘CAECUM’, 

or ‘HEPATIC FLEXURE OF COLON’ were classified as having `proximal’ colon 

cancer, patients with tumor location specified as 'DESCENDING COLON', 

'RECTOSIGMOID JUNCTION', 'SPLENIC FLEXURE OF COLON', 'SIGMOID 

COLON', or 'TRANSVERSE COLON' were classified as having ‘distal’ colon cancer 

and patients with tumor location specified as ‘RECTUM’ where classified as having 

‘rectal’ colon cancer.  A single patient with tumor location specified as ‘APPENDIX’ 

was removed from the analysis.  Patients with cMYC expression scores <1 were 

classified as having ‘low’ cMYC expression, while patients with cMYC expression 

scores ≥1 and <2 were classified as having ‘moderate’ cMYC expression and patients 

with the scores ≥2 were classified as having ‘high’ cMYC expression.  Patients with 

relative cMYC copy number >0.6 and <1.6 were classified as having cMYC ‘gain’ events, 

while patients with relative cMYC copy number ≥1.6 were classified as having cMYC 

‘amplification’ events, with the rest classified as having low cMYC copy number. All 

deceased patients had between 1 and 4 entries specifying their cause of death (COD). 

Any patient with at least one COD entry containing colon cancer description was 

classified as having died from colon cancer. Further, any patient for whom the only COD 



given was unspecified malignant neoplasm was assumed to have died from colon (and 

not another) cancer and classified accordingly.  All other patients were classified as 

having died from causes other than colon cancer.  Upon manual examination of the COD 

table, a handful (<10) of patients were reclassified to account for uncommon 

combinations of COD entries.  Any patients who died within 30 days of diagnosis or had 

surgery more than a year removed from diagnosis date were excluded from the analysis. 

The additional filtering steps described here resulted in removal of 51/689 patients with 

available CCAT1 scores, leaving 638 patients subject to further analyses. 

Analysis of pairwise associations between CCAT1 expression status (+/-) and 

other covariates (Table 1 and Supplemental Table 6) was carried out using R 

(http://www.R-project.org/) package Epi (http://CRAN.R-project.org/package=Epi) with 

Fisher Exact Test p-value reported in the table. For each individual association test, 

patients with missing values of the particular covariate were excluded. 

Survival analysis was carried out using R package survival (http://CRAN.R-

project.org/package=survival). Cox proportional hazards model was fitted using 

covariates given in Supplemental Table 6. The analysis was carried out for 5 year 

survival for both colon cancer and overall causes of death (Table 1, Supplemental Table 6, 

and Figure 7C). Initial model fit was performed including cMYC expression score and 

cMYC relative copy number category as two additional covariates. Due to large number 

of patients with missing cMYC CN information, only 147/638 patients contributed to 

parameter estimation. Further, due to lack of colon cancer deaths for patients with stage I 

tumors within this smaller patient subset, parameters for the effects of tumor stage could 

not be estimated. Exclusion of cMYC covariates did not result in significant increase of 



lack of fit (Chi-square p-value > 0.9 for both types of COD). We therefore excluded 

cMYC covariates from the final analysis, resulting in 491/638 patients contributing to the 

reported parameter estimates.  

 

Non-‐isotpic	  in	  situ	  hybridization 

Non-isotopic in situ hybridization (ISH) was performed on 4 µm FFPE sections using 

QuantiGene® ViewRNA ISH Tissue Assay (Affymetrix/Panomics) following the 

manufacturer's protocol on a Tecan platform equipped to carry out non-isotopic in 

situ hybridization. Gene-specific probe for detection of human CCAT1 RNA 

(Affymetrix; VA1-17802) target region 2-2696 in Genbank accessions NR_108049.1 was 

used on tissue samples. A probe set to Bacillus subtilis dihydropicolinate reductase 

(dapB) (VF1-11712), target region 1363-2044 in Genbank accession L38424 was used as 

a negative control. Horseradish peroxidase (HRP) conjugated label probe was used, 

followed by TSA™ (tyramide signal amplification) to increase sensitivity (Perkin Elmer 

NEL748001KT). Briefly, TSA Plus DIG stock solution (digoxigenin) was diluted 1:50 in 

1x Plus Amplification Diluent and applied to sections and incubated for 10 minutes at 

room temperature. This was followed by incubation with anti-DIG-AP (Roche 

11093274910) diluted 1:500 in TNB blocking buffer with 4% lamb serum 

(Gibco, 16070-096) for 30 minutes at room temperature. Vulcan Fast Red substrate 

(Biocare, FR805S) was used for chromogenic detection.   

 

Genomic	  copy	  number	  analysis	  



For quantitative copy number analysis, genomic DNA was isolated with the DNeasy 

blood & tissue kit (Qiagen). Quantitative PCR for cMYC copy number was performed 

with the TaqMan genotyping master mix using Taqman copy number probes (Applied 

Biosystems). For colon cell lines and tumors, samples were normalized to copy number 

at the TERT locus, which is rarely amplified or deleted in colon cancer (Tumorscape, 

http://www.broadinstitute.org/tumorscape). 

 

Immunohistochemistry 

Immunohistochemistry (IHC) was performed on 4um thick formalin-fixed, paraffin-

embedded tissue sections mounted on glass slides. All IHC steps were carried out on the 

Ventana Discovery XT automated platform (Ventana Medical Systems; Tucson, AZ).  

Sections were treated with Cell Conditioner 1, standard time, and then incubated in 

primary antibodies: cleaved caspase 3 (Cell Signaling Technologies), phospho-Histone 

H3(Ser10) (Upstate Biotechnology), BRD4, clone EPR5150 (AbCam), and cMYC, clone 

Y69 (Ventana Medical Systems; Tucson, AZ).  Cleaved caspase 3, phospho-Histone H3 

and BRD4 were detected by OmniMap anti-Rabbit-HRP (Ventana Medical Systems; 

Tucson, AZ).  cMYC was detected by UltraMap anti-Rabbit-HRP. The sections were 

counterstained with hematoxylin, dehydrated, and coverslipped. 
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Supplemental Figure 1: Validation of Epi200 gRNA library hits. 
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Supplemental Figure 9: Transcriptional profiling following BRD4 knockdown and JQ1 treatment reveals that CCAT1 is a BET 
specific target.
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Supplemental Figure 10: CCAT1 is a BET inhibitor target, but not exclusively regulated by BRD4.
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Supplemental Figure 13: CCAT1 is superior to cMYC as a BET inhibitor predictive biomarker.  
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Supplemental Figure 14: Development of a CCAT1 in situ hybridization assay. 
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Supplemental Figure 15: CCAT1 expression correlates to poor outcome independent of clinical stage. 
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