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Introduction
Targeted metagenomic sequencing is commonly used for the 
identification of disease-causing bacteria, archaea, and fungi. In 
addition, 16S rRNA gene surveys are increasingly being adopted  
as diagnostic tools to profile microbiome communities that 
contribute to clinical pathogenesis (1). However, to understand 
what constitutes a disease-associated or -causing microbiome, 
it is necessary to define the characteristics and functions of a 
healthy human microbiome community across diverse genetic 
and environmental confounders (2). Consortium-driven studies 
such as MetaHIT, the Human Microbiome Project, LifeLines, 
and the American Gut Project have made significant progress in 
compositional profiling of the human microbiome by establish-
ing standard operating procedures, including DNA extraction 
protocols, 16S primer design, and bioinformatics pipelines (3). 
The next phase in identifying robust host-microbiome inter-
actions that modulate human disease requires integrated and  
sufficiently powered multicenter trials to account for human 
genetic and environmental variation. However, optimal study 

designs are often cost-prohibitive and logistically difficult to 
manage. Reanalyzing large deposits of publicly available 16S 
sequencing data represents an attractive alternative approach to 
mine clinical microbiome associations, in order to facilitate pre-
cision diagnosis and microbiome-based therapy. Nevertheless, 
reanalysis of individual microbiome surveys remains a signifi-
cant bioinformatics challenge owing to the lack of a gold stan-
dard analytical pipeline that provides accurate taxonomic pro-
filing of sequences generated from distinct 16S variable regions 
across multiple technology platforms.

Gastrointestinal disease is a prime example of where clini-
cal microbiome surveys have provided promising insights into 
microbiome associations and mechanisms. However, systematic 
review of these largely single-site cohort studies has demonstrat-
ed inconsistent findings, largely due to variations in methods for 
data generation and analysis, which introduce significant bias for 
cross-comparisons (4, 5). Chronic diarrhea is a significant cause 
of morbidity in developed countries, and overlapping disease 
symptoms often make diagnosis and management challenging. 
Thus, there is a pressing need for noninvasive approaches to dif-
ferentiate the clinical spectra of common diarrheal symptoms, 
particularly in irritable bowel syndrome (IBS), inflammatory 
bowel diseases (IBDs) such as Crohn’s disease and ulcerative 
colitis, and Clostridioides difficile infection (CDI), which affect up 
to 20% of the population, and misdiagnosis is frequent. With few 
reliable disease-specific fecal biomarkers reported for IBD or IBS 
(6, 7), endoscopy remains the gold standard for diagnosis, com-
bined with laboratory testing and questionnaires. Clinical diag-
nosis and treatment are further complicated by antibiotic use and  
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repeat sequences do not accurately reflect uncharacterized or 
unidentified species that may contribute to taxonomical over-
classification in a microbiome community. As a result, we used 
simulated amplicon data of unannotated 16S sequences (down 
to the family rank from the RDP database 11.5) to determine the 
optimal settings in BLCA. Our results suggested that taxonom-
ic overclassification is heavily dependent on the 16S variable 
region, identity, and coverage of sequence alignment in BLCA 
(Supplemental Figure 2). By increasing both identity and cover-
age thresholds of sequence alignment to 0.99, without applying 
bootstrap confidence thresholds for taxonomic selection, we 
were able to reduce overclassification rates to below 5% (for V1–
V3, V3–V5, and V6–V9) and 10% (for V4) (Supplemental Figure 
2). Therefore, we used sequence identity and coverage thresholds  
of 0.99 in BLCA to conduct subsequent benchmarking.

The aforementioned threshold settings were used in BLCA to 
annotate simulated amplicons of variable length, which were gen-
erated from known taxonomic lineages in the NCBI 16S RefSeq 
database. To determine taxonomic accuracy, we compared BLCA 
annotations with curated input lineage 16S data (ground truth). 
Optimal confidence scores and proportions of correctly assigned 
taxonomic annotations were calculated for each qualified 
sequence length, and our analysis revealed a significant increase 
in the proportion of correctly assigned amplicons with longer read 
length (Figure 1, C and D, and Supplemental Figure 3). Interest-
ingly, we also observed a significant increase in confidence scores 
for incorrect annotations with longer read length, and that mis-
classification rates were highly dependent on 16S sequence orien-
tation and the variable region analyzed (Supplemental Figure 3). 
This finding is related to the observation that increasing amplicon 
length generally improved taxonomic accuracy at the species rank 
compared with the genus rank, as the latter has a greater capaci-
ty for degeneracy. Based on our finding that universal confidence 
thresholds should not be applied to all types of 16S amplicon data, 
we determined optimal region-specific confidence thresholds to 
achieve accurate taxonomic annotation for all common types of 
amplicon data that could be used in a meta-analysis (Supplemen-
tal Figure 4). This conceptual approach provided the foundation 
for our 16S meta-analysis using a new taxonomic binning strategy.

Taxa4Meta: a “best practices” taxonomic profiler for 16S 
meta-analysis. Based on our benchmarking results of simulated 16S 
amplicon data, we developed the bioinformatics pipeline Taxa4Meta 
to enable accurate taxonomic profiling of 16S ribosomal DNA ampl-
icon data generated from different sequencing strategies (Figure 
2A). The pipeline was designed to maximize the utilization of clini-
cally archived 16S data sets by employing a variable sequence length 
analysis strategy that can be applied to multiple amplicon regions. 
To achieve precise taxonomic profiles, we implemented 2 key work-
flow-specific settings. First, VSEARCH-based de novo sequence 
clustering with 99% similarity was used to cluster the 16S ampli-
con data, while keeping in mind the optimal sequence length range 
identified for each amplicon data type. Second, we used BLCA with 
stringent sequence alignment criteria (99% identity and 99% cover-
age) to obtain confident species calls, while applying region-specific 
confidence scores as determined above. Any OTUs not annotated 
by BLCA were processed by the IDTAXA program, which utilized 
its pre-built RDP training set (version 16; curated by the program  

susceptibility to CDI, which is often a postinfectious trigger of 
IBS, while IBD patients are frequently asymptomatic carriers of 
toxigenic C. difficile (8, 9). As the gut microbiome is composition-
ally different, yet implicated in the pathogenesis of these diarrhe-
al diseases, we investigated whether 16S profiling could stratify 
patients with these commonly misdiagnosed diseases.

Results
Optimal sequence length for accurate taxonomic profiling of 16S ampl-
icons. Most pipelines that process 16S amplicon reads apply quality 
control (QC) procedures and trim the reads to short, equal lengths. 
This approach can introduce taxonomic and compositional bias 
(Figure 1A). An alternative method is to submit both short and long 
16S reads for downstream processing, but this presents a bioinfor-
matics challenge. Furthermore, the optimal amplicon length for 
sequence clustering/denoising and taxonomic resolution needs to 
be determined for each microbial species of interest. To assess the 
feasibility of this bioinformatics approach, we simulated 16S ampl-
icon data with variable length and an identical allocated sequence 
count (randomly assigned from 1 to 50) to benchmark the accuracy 
of different sequence clustering/denoising tools.

We found that for commonly used 16S variable regions (V1–
V3, V3–V5, V4, and V6–V9), closed-reference analysis using 
UCLUST discarded a large proportion of amplicon reads, even 
when using a comprehensive reference database such as SILVA 
release 132. Moreover, the results were strongly biased toward 
higher sequence identity and longer reads (Supplemental Table 
1; supplemental material available online with this article; https://
doi.org/10.1172/JCI170859DS1). While the DADA2 pipeline 
retained more reads in this simulated analysis, it still discarded 
more than 2% of sequences, with singleton reads being dispropor-
tionately excluded. By contrast, de novo clustering tools retained 
all sequence reads, setting a precedent for accurate compositional 
profiling (Supplemental Table 1). To determine the optimal ampl-
icon length thresholds and ranges for sequence clustering of vari-
able length input data, we performed pairwise Spearman correla-
tions between any 2 variable lengths (as 2 independent samples) 
in operational taxonomic unit (OTU)/amplicon sequence variant 
output tables. We found that applying 99% similarity for clus-
tering amplicons in VSEARCH conferred the highest correlation 
coefficients across wider length ranges in all 16S variable regions 
tested (Supplemental Table 2). Spearman coefficients increased 
progressively with longer reads, allowing us to establish minimum 
amplicon length thresholds (Spearman’s ρ > 0.75) and optimal 
amplicon length ranges for sequence clustering of variable length 
input data (Figure 1B and Supplemental Figure 1).

The selected amplicon sequence ranges were subsequently 
used to evaluate the accuracy of taxonomic annotation provid-
ed by qualified variable read lengths generated from various 16S 
regions. To achieve this, we used random and repeat sequences 
previously reported for benchmarking of taxonomic overclas-
sification by Murali et al. (10). Our findings indicated that the 
default settings in the Bayesian-based Lowest Common Ances-
tor (BLCA) tool (11) did not annotate these sequences, while oth-
er commonly used taxonomic classifiers, including Ribosomal 
Database Project (RDP) classifier and SINTAX, produced high 
false-positive hits (10). It is important to note that random and 
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Figure 1. Influence of 16S amplicon sequence length, orientation, and variable region on taxonomic and clustering accuracy. Simulated 16S 
sequences of variable length were generated from known input taxa (ground truth) in the NCBI 16S RefSeq database. Taxonomic annotation was 
determined for accuracy from simulated reads using the BLCA tool. Confidence scores from the data output were used for statistical calculations. 
(A) Schematic representation showing how increasing amplicon length improves taxonomic accuracy. (B) Spearman correlations of VSEARCH-based 
de novo clustering with 99% similarity for 16S V1–V3 amplicons of varying length derived from the same parent 16S sequence. The optimal sequence 
length range for clustering is highlighted (orange boxes). Results for other 16S variable regions are presented in Supplemental Figure 1, and Spearman 
correlation results for other clustering/denoising tools are provided in Supplemental Table 2. (C and D) Both the confidence score and accuracy of 
taxonomic assignment for simulated amplicons are significantly affected by sequence length and orientation. Supplemental Figure 3 provides addi-
tional results for other 16S variable regions. “Org.” denotes the original amplicon length without trimming. Statistical analysis indicates a significant 
difference (P < 0.05, Wilcoxon test) between correct and incorrect genus/species annotations at each amplicon length. 
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To assess Taxa4Meta’s performance, we critically compared 
it against state-of-the-art 16S pipelines and the curated input data 
(ground truth). As commonly used 16S pipelines rely on different 
reference databases for taxonomic annotation, we interpreted taxo-
nomic profiles at the family rank, which is more consistently repre-
sented across databases compared with genus and species ranks. We 
used simulated data sets containing defined sequence abundances 
and taxonomic lineages (ground truth) to generate Spearman correla-
tions and compared qualified input data with compositional profiles 
generated by individual 16S pipelines. In side-by-side comparisons of 
Taxa4Meta against EzBiome-, DADA2-, UCLUST-, and USEARCH-
based 16S pipelines, we demonstrated that Taxa4Meta outperformed 
the other taxonomic profilers, generating significantly higher Spear-
man correlation coefficients across all 16S regions tested (Figure 2B).

developer) for classification purposes. Finally, we generated Tax-
a4Meta feature tables by collapsing the taxonomy of de novo OTUs 
down to the species rank without processing for random rarefaction, 
which could potentially result in a biased taxonomic profile.

To evaluate the taxonomic profiling accuracy of Taxa4Meta, 
we generated complex mock communities comprising defined 
and cultivable bacteria as benchmarking input. Initially, we simu-
lated variable length amplicons of diverse 16S sequences sourced 
from the NCBI 16S RefSeq database. This database consists of 
over 20,000 bacterial strains representing more than 14,000 spe-
cies from over 2,900 genera. We selected amplicon length rang-
es for benchmarking Taxa4Meta that provided optimal sequence 
clustering and taxonomic annotation for each distinct 16S variable 
region, as illustrated in Supplemental Figures 1 and 3.

Figure 2. Taxa4Meta-based taxonomic profiling of 16S amplicon data. (A) Schematic of the Taxa4Meta analysis workflow. (B) Spearman correlations for 
family abundances, comparing simulated 16S data input (ground truth) with taxonomic output generated by different taxonomic profilers covering a range 
of 16S variable regions. Additional benchmarking results for simulated data are presented in Supplemental Figure 5. (C) Taxa4Meta abundance profiles 
exhibit the highest similarity to WGS data, specifically Kraken2 family profiles. To quantify the similarity, an abundance-weighted Jaccard distance was 
calculated between 16S profiler-specific outputs and the gold standard WGS (Kraken2). For visualization and benchmarking, the most abundant 29 family 
features (totaling 0.95 ± 0.07 [SD] of family abundance) across all analyses were used.
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regions and sequencing platforms, identifying common microbi-
ome features in over 900 subjects with no documented gastro-
intestinal (GI) disease across North America, Europe, Asia, and 
Australasia (Supplemental Table 3). We further compared the tax-
onomic profiles of control subjects with those of over 13,000 par-
ticipants in the American Gut Project (15) and LifeLines cohorts 
(16). Our findings using Bray-Curtis dissimilarity distance-based 
β-diversity analysis showed that control subjects sequenced 
across diverse technology platforms shared a similar sample dis-
tribution or microbiome variation pattern with the American Gut 
cohort at both genus- and family-rank abundance profiles (Sup-
plemental Figure 8). We also identified a significant enterotype 
bias when comparing the American Gut cohort or meta-analy-
sis controls with the European LifeLines cohort. Therefore, we 
designed our meta-analysis to include study controls spanning 
all the major classical gut enterotypes to facilitate accurate down-
stream disease classification at a population-scale level. Our anal-
ysis revealed that the healthy gut microbiome in controls from 
our 16S meta-analysis cohorts was dominated by non-Prevotella 
enterotypes, which were largely composed of Bacteroidaceae, 
Lachnospiraceae, and Ruminococcaceae (Supplemental Figure 
8). Furthermore, we identified some outlier controls that were 
dominated by high abundance of pathobiome, which was defined 
as the presence of Enterococcus, Streptococcus, Clostridioides, Esch-
erichia/Shigella, Salmonella, Klebsiella, and Pseudomonas (Figure 
3A). Given that Prevotella and pathobiome-dominated gut micro-
biota are associated with chronic inflammatory conditions (5, 17, 
18), our results emphasize the importance of population-scale 
analyses that consider enterotypes and pathobiome when defin-
ing the healthy human microbiome, particularly in the context of 
dysbiosis-associated GI disease.

Dysbiosis in chronic human diarrheal disease. Using the Tax-
a4Meta pipeline, we conducted an analysis of fecal microbiome 
data obtained from multiple 16S regions sequenced on Illumi-
na and 454 pyrosequencing platforms. Our study involved the 
examination of more than 5,500 matched controls and clinically 
confirmed diarrheal patients with various conditions, including 
CDI, IBD, IBS, and non-IBS functional gastrointestinal disor-
ders (FGIDs) from diverse geographical regions including North 
America, Europe, Asia, and Australasia. Our inclusion criteria for 
clinical cohorts required adherence to internationally recognized 
diagnostic guidelines (Supplemental Table 3) and the use of 16S 
amplicon data that met our QC standards.

We calculated α-diversity indices (Shannon and richness) from 
Taxa4Meta feature tables, which revealed that CDI cases had signifi-
cantly lower diversity compared with controls or other diarrheal dis-
eases (Supplemental Figure 9A). However, there was inconsistency 
in α-diversity indices among clinical cohorts sequenced across dif-
ferent 16S regions (Supplemental Figure 9B). The Taxa4Meta pipe-
line classified 85% of total sequences that successfully passed QC 
across the various meta-analysis cohorts. This outcome indicates 
that this data set comprehensively represents the substantial propor-
tion of mined sequence reads, thus underpinning the robustness and 
reliability of the data interpretation (Supplemental Figure 10A). The 
collapsed species profiles generated by Taxa4Meta included both 
classified and unclassified members, representing 54% and 46% 
of total abundance, respectively (Supplemental Figure 10B). This 

Using an independent method of hierarchical clustering, we 
further demonstrated that only Taxa4Meta profiles clustered 
with ground truth input profiles (Supplemental Figure 5A). In 
contrast, other taxonomic profilers failed to detect a significant 
number of families across the four 16S regions tested. Specifi-
cally, up to 30% of families were not detected, depending on the 
specific taxonomic profiler, compared with only 0.4% omitted 
by Taxa4Meta (Supplemental Figure 5B). These results under-
score the utility of Taxa4Meta in generating accurate taxonomic 
profiles of complex microbiome communities, which is evident 
down to species rank, as demonstrated by the stringent detec-
tion of C. difficile, a pathogen required for the clinical diagnosis 
of CDI (Supplemental Figure 5C).

To evaluate how Taxa4Meta performs with real-world 
microbiome data sets, we benchmarked different 16S pipelines 
using a cohort of healthy subjects (12). Here, individual fecal 
DNA extracts underwent comprehensive 16S profiling and 
shotgun metagenomic sequencing. Similar to our observations 
with complex simulated microbiome communities, Taxa4Meta 
family-rank profiles generated from Illumina sequencing plat-
forms provided significantly more sequencing depth than 454 
pyrosequencing and clustered together with Kraken2-generat-
ed annotations (Supplemental Figure 6, A and B). Kraken2 was 
regarded as a gold standard reference method given its high 
family-rank taxonomic accuracy using metagenomic data (13). 
Furthermore, adopting an independent method of pairwise 
abundance-weighted Jaccard distance calculations, Taxa4Meta 
profiles were found to have the best close distance to Kraken2 
profiles (Figure 2C), which was consistently observed across 
all 16S data types investigated, regardless of sequencing depth 
(Supplemental Figure 6, B and C). We also evaluated the accura-
cy of Taxa4Meta species-rank profiles compared with MetaPh-
lAn2-generated taxonomy, which has higher precision in avoid-
ing species misclassification (14). We found that Taxa4Meta 
stringently controlled for species misclassification (Supplemen-
tal Figure 7A), and its species abundance profiles showed signifi-
cantly improved correlations with MetaPhlAn2 species profiles 
(Supplemental Figure 7B). Moreover, our benchmarking analysis 
demonstrated that the optimized (default) parameters within 
Taxa4Meta exhibited a higher degree of consistency in correla-
tion results with the reference profile. This higher specificity is in 
contrast to the varied outcomes observed when stricter or more 
lenient parameter settings were employed in Taxa4Meta for tax-
onomic profiling across diverse platforms and regions (Supple-
mental Figure 7C). Collectively, our findings demonstrate that 
collapsed taxonomic profiles generated by Taxa4Meta are highly  
accurate and suitable for 16S meta-analysis of amplicon data 
generated from diverse sequencing strategies.

Population-scale meta-analysis to define the healthy human 
gut microbiome. Defining the healthy human gut microbiome is 
a significant challenge because of the numerous individual fac-
tors that influence it, including age, genetics, diet, environment, 
lifestyle, and transmission (2). In addition to these factors, incon-
sistent analytical methods and small cohort sizes play a crucial 
role in determining the reliable characterization of the healthy 
human microbiome. To address these challenges, we used the 
Taxa4Meta pipeline to perform a meta-analysis of diverse 16S 
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allowed for confident assignment of species calls and further data 
mining. An abundance-weighted Jaccard distance-based β-diversity 
analysis revealed a healthy-like microbiome community structure in 
patients with IBS and ulcerative colitis (UC), while significant dysbi-
osis was consistently detected in cases of CDI and Crohn’s disease 
(CD) (Figure 3A). This observation is consistent with prior case-con-
trol matched studies (19), which reported subtle microbiome differ-
ences in IBS and FGIDs compared with healthy controls (Supple-
mental Figure 11). In contrast, we found that CDI and CD patients 
significantly differed from patients with other diarrheal diseases in 
terms of pathobiome abundance (Figure 3A), reflecting gut dysbio-
sis favoring engraftment and expansion of potential pathogens. Our 
findings corroborate previous research (5, 18), which found that the 
abundance of Enterobacteriaceae and Enterococcaceae was sig-
nificantly higher in CDI and CD patients compared with matched 
controls or IBS and UC patients (Figure 3B and Supplemental Fig-
ure 11). Pathobiome-dominated microbiome communities in CD 
and CDI patients primarily consisted of Enterobacteriaceae and 
Enterococcaceae, as demonstrated independently of 16S region, 
sequencing platforms, age, or geography (Supplemental Figure 11). 
To further explore pathobiome compositional differences in patients 
versus disease controls, we conducted a Kullback-Leibler divergence 
analysis (Figure 3C). Disparity was particularly pronounced among 
patients diagnosed with IBS and FGID, in whom a diminished abun-
dance of pathobiome was observed. This subtlety could not be read-
ily discerned through conventional statistical methodologies (Figure 
3, A and B) and is noteworthy in that while pathobionts are typically 
characterized as minor constituents of the IBS microbiome, their 
implication in the pathogenesis of IBS is well established (4). There-
fore, specific β-diversity distance metrics and pathobiome abun-
dance calculations are useful tools for defining the core microbiome 
features of specific diarrheal disease types.

We conducted an abundance-based Spearman correlation 
analysis to examine the relationship between identified species and 
their respective parent genera across the comprehensive cohorts 

within the meta-analysis. The results indicated that a significant 
correlation is observed for the majority of identified species with 
their corresponding parent genera. However, notable disparities 
in the Spearman ρ values were evident for some identified species 
(Figure 3D). This observation suggested that specific cohort and 
technical variations could potentially affect the accuracy of some 
feature detection. Notably, species exhibiting lower correlation 
values might not consistently demonstrate the identical pattern 
observed in the genus-based abundance differential analysis. Nev-
ertheless, using hierarchical clustering analysis to examine family 
abundance profiles, we demonstrated that 4 of 8 UC cohorts were 
clustered together with control and IBS patients. Meanwhile, the 
remaining UC cohorts and the majority of CD cohorts formed a 
distinct IBD-specific cluster (Supplemental Figure 11). This note-
worthy finding was not replicated by the microbiome meta-analy-
sis conducted by Duvallet et al. (20), as UC and CD patients were 
combined for microbiome comparisons against controls. In a 
recent systematic literature review, a significant reduction in Fae-
calibacterium prausnitzii, an antiinflammatory gut commensal, was 
reported in both UC and CD patients (5). Our meta-analysis of CD 
and UC cases corroborated this finding (Supplemental Table 4). 
However, we were unable to demonstrate significant alterations in 
Eubacterium rectale and Escherichia coli abundance in UC patients, 
as previously reported (5). These discrepancies may reflect micro-
biome variations seen in UC cohorts, as demonstrated in our 
meta-analysis. We identified several previously unappreciated 
top-ranked disease-associated species, including Fusicatenibacter 
saccharivorans (control-specific) and Bacteroides xylanisolvens and 
Romboutsia timonensis (less prevalent in IBD), which have not 
been reported in prior studies. Our unique findings also included 
decreased relative abundances of Anaerostipes hadrus and Eubacte-
rium rectale in CDI patients only (Supplemental Table 4), features 
that we exploited to develop disease-specific classifiers.

Collectively, the findings of our study revealed both consis-
tent and inconsistent outcomes generated by Taxa4Meta across 
diverse platforms and regions. While the taxonomic profiles 
demonstrated remarkable consistency, certain discrepancies 
necessitate focused attention. Specifically, the following observa-
tions warrant consideration: (a) Taxonomic profiles derived from 
16S V6–V9 data exhibited a distinct separation from profiles orig-
inating in other regions (Supplemental Figure 5A). (b) Platforms 
employing 454 pyrosequencing tended to yield a reduced number 
of amplicon reads in comparison with Illumina platforms, leading 
to potential oversight in detecting critical microbiome features 
(Supplemental Figure 6, A and B). (c) Within our meta-analysis 
cohorts, a conspicuous demarcation emerged not only between 
454 and Illumina platforms within the control population but also 
between V4/V3–V4 regions and alternative regions (Supplemental 
Figure 11). These identified deviations hold the potential to impact 
downstream applications. Therefore, accurate classification anal-
ysis must adequately address region-specific or platform-specific 
effects to ensure the robustness and reliability when disease-spe-
cific classifiers are selected. In part, we overcame these limitations 
using the pan-microbiome profiling strategy described below.

Pan-microbiome profiling outperforms individual 16S region– 
specific or platform-specific analysis for disease classification. Dis-
ease classification represents a crucial emerging application of gut 

Figure 3. Pan-microbiome analysis identifying diarrheal disease-specific 
taxa. (A) β-Diversity analysis of collapsed Taxa4Meta species profiles, 
where the green ellipse represents the healthy-associated microbiome and 
the red ellipse represents the CDI-associated microbiome. Each point cor-
responds to a patient sample, and ANOSIM testing was used to compare 
disease versus controls using 999 permutations. The abundance-weighted 
Jaccard distance metric was used for β-diversity analysis. The relative 
abundance of pathobiome taxa, including Enterococcus, Streptococcus, 
Clostridioides, Escherichia/Shigella, Klebsiella, and Pseudomonas, was 
significantly higher in patients with CD and CDI. Statistical significance 
was determined using a pairwise Wilcoxon test with Benjamini-Hoch-
berg correction (***P < 0.001). (B) Average family relative abundance of 
each disease group. The top 21 family abundances across data sets are 
presented in Supplemental Figure 10. Statistical analysis shows significant 
differences (*P < 0.05) between disease groups, as determined by Krus-
kal-Wallis test with Benjamini-Hochberg correction. (C) Kullback-Leibler 
divergence analysis was used to identify pathobiome abundance differ-
ences across the diarrheal disease cohorts. Pathobiome data in each group 
were normalized using total sum scaling. KL divergence was calculated 
between 2 subdistributions using the total distribution (from all 6 groups) 
as the background distribution. (D) Abundance-based correlation analysis 
between each species and its parent genus. Only classified species were 
included in the correlation analysis. A Spearman ρ value of 1 indicates the 
detection of a single species representing the entire parent genus.
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symptoms, and no significant differences in microbiome commu-
nity structure were observed, as previously reported (19).

Using Taxa4Meta taxonomic profiles, we identified several key 
features, including presence of C. difficile (Supplemental Figure 13B), 
as the top discriminating features that are pathophysiologically rele-
vant in differentiating CDI from other diarrheal diseases. It is worth 
noting that this top-ranking feature was not identified as a classifi-
er in 2 prior microbiome meta-analyses, highlighting the technical 
bias in previous studies (20, 21). Taxa-based classification models 
were developed for the 5 clinical groups under investigation (control, 
CDI, IBS, UC, and CD) and demonstrated excellent AUC results, but 
moderate CA scores, indicating suboptimal disease classification 
across all cohort groups (Supplemental Figure 13C). We reasoned 
that this underperformance could be attributed to the similarity of 
microbiome features in control, UC, and IBS subjects, and as such 
represented a challenge for reliable cross-classification (Figure 3A). 
Nonetheless, in contrast to the multiple-group classification, bina-
ry models provided excellent disease classification, with improved 
AUC and CA scores, especially when differentiating CDI from other 
patients and healthy controls (Supplemental Figure 13D).

Prototypical workflow for clinical diarrheal disease classifica-
tion. With the urgent need to differentiate common symptoms in 
CDI, IBD, and IBS, we assembled a prototypical workflow to assist 
in stratifying these patients based on our Taxa4Meta-generated 
binary algorithms (Figure 5A). We prioritized the need to diagnose 
CDI based on the clinical necessity for rapid treatment and patient 
contact isolation. By applying a binary classifier that differentiated 
CDI from combined IBD or IBS subtypes, we demonstrated a CA 
of 0.95 (Figure 5A). Although we rationalized employing disease 
subtype–agnostic classifiers, this decision was underpinned by our 
substantiated demonstration of CA in the context of CDI cases. 
However, it is noteworthy that our CDI-centric model encountered 
limitations in effectively distinguishing between IBD and IBS dis-
ease subtypes (Figure 5B). In light of this, we pursued a secondary 
objective that entailed the development of an additional binary 
classifier. This classifier was designed to discriminate between 
combined instances of IBD (encompassing both UC and CD) and 
cases of IBS. Remarkably, the resultant classifier yielded an overall 
accuracy of 0.96 (Figure 5A), indicating that our pan-microbiome 
analytical approach has potential diagnostic utility beyond CDI.

To independently validate our 2-step diagnostic workflow, we 
tested 16S data generated from (a) recently published clinical CDI, 
IBD, and IBS microbiome cohorts, and (b) real-world data obtained 
from self-reported IBD and IBS cases in the American Gut and Life-
Lines population cohorts. Our classifiers exhibited a robust perfor-
mance, identifying CDI patients at a rate of 93.6%. Furthermore, 
the overall accuracy of 0.97 achieved in discriminating between 
clinically confirmed instances of IBD and IBS (Figure 5B) under-
scored the proficiency of our approach. The validation cohorts 
used in this study serve as robust substantiation of the viability of 
pan-microbiome–based classification in the advancement of com-
panion diagnostics aimed at the stratification of diarrheal diseases.

To compare the classification performance of Taxa4Meta with 
that of other state-of-the art 16S profilers, we conducted a bench-
mark analysis using the taxonomic profiles generated via both 
the Taxa4Meta and DADA2-RDP pipelines. This assessment was 
conducted across the same meta-analysis and validation cohorts. 

microbiome surveys for biomarker discovery. To investigate the 
potential benefits of pan-microbiome profiling in disease classifi-
cation, we merged core microbiome communities that had been 
adjusted for demographic and technical bias. In this context, we 
defined pan-microbiome as representing core microbiome fea-
tures identified across different sequencing strategies. To assess 
the efficacy of our approach, we conducted pilot studies using 
different sequencing modalities, focusing on our center’s Human 
Microbiome Project (HMP) cohort of pediatric FGID cases. We 
used 16S V1–V3 and V3–V5 amplicons generated on the 454 pyrose-
quencing platform to profile the cases. Our analysis of β-diversity 
from collapsed Taxa4Meta taxonomy profiles did not separate 
FGID cases from healthy controls (Figure 4A). As expected, we 
observed suboptimal classification accuracy (CA < 0.85) when pro-
filing individual V1–V3 and V3–V5 data sets (Figure 4B). To identi-
fy core microbiome genera that discriminated between FGID and 
healthy controls, we used feature ranking generated by the random 
forest algorithm. We selected >85% of genera abundance features 
that were common to both 16S regions, which identified Roseburia, 
a previously underappreciated genus, as a top and consistent core 
microbiome feature (Supplemental Figure 12). Our results indicat-
ed that supervised training of pan-microbiome profiles significant-
ly improved classification accuracy (CA) when compared with indi-
vidual microbiome surveys (Figure 4B).

As another example, we conducted an analysis on amplicon 
data derived from multiple CDI cohorts, which were generated 
using various sequence deposits from different 16S regions and 
technology platforms (Supplemental Table 3). In contrast to the 
subtle differences observed in FGID cases, CDI patients displayed 
a consistent and severe dysbiosis, which was evident across mul-
tiple geographic locations and sequencing methods (Figure 4C). 
Using an approach similar to the one mentioned above, classifi-
cation models specific to the platform demonstrated good per-
formance during the training phase in distinguishing CDI from 
controls. However, these models were unable to cross-validate 
subjects across different sequencing platforms, thereby posing a 
significant limitation for meta-analysis. This classification inac-
curacy was overcome by use of merged pan-microbiome profiles 
for training (Figure 4D). By minimizing the impact of pattern vari-
ation and retaining common microbiome features, pan-microbi-
ome patterns facilitated the discovery of biomarkers.

Utility of pan-microbiome features for diarrheal disease classifi-
cation. We employed 2 distinct strategies to generate comprehen-
sive and binary disease classification models, using deposited 16S 
amplicon data based on pan-microbiome profiles (Supplemental 
Figure 13A). The primary objective of developing classification 
models was to effectively differentiate between CDI, IBD, and 
IBS patients using alternative microbiome-based classifiers. The 
diagnosis of diarrheal patients included in the study was based on 
internationally recognized clinical guidelines, as outlined in indi-
vidual clinical cohorts (Supplemental Table 3). The original sample 
grouping information provided in each published cohort was used 
to develop our classification models. As disease subgroup infor-
mation was not consistently provided for all individual patients, 
we generated disease classifiers that combined the respective IBD 
or IBS subgroups. We also included IBS-constipated cases in our 
meta-analysis, given that these patients often exhibit alternating 
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differences were observed in the training statistics of the 2 classi-
fication models (Supplemental Figure 14, A and B). However, Tax-
a4Meta emerged as notably more accurate than the DADA2-RDP 
pipeline when validating the models through independent cohorts 

Notably, our findings revealed that Taxa4Meta exhibited a superi-
or capacity, for example in detecting instances of C. difficile within 
CDI patients in comparison with the DADA2-RDP pipeline. Despite 
these disparities in performance, it is noteworthy that no significant 

Figure 4. Supervised classification achieved by pan-microbiome profiling. (A) β-Diversity analysis of collapsed Taxa4Meta species profiles for V1–V3 and 
V3–V5 amplicon data generated from the same DNA extracts. The pairwise Wilcoxon test with Benjamini-Hochberg correction shows that the difference 
between the 2 groups is not significant. (B) Receiver operating characteristic (ROC) analysis of supervised classification using 16S region–specific versus 
pan-microbiome genera. The random forest trainer was used for supervised classification analysis, and the roc.test function from the pROC package was 
used for comparison of ROC curves. Statistical significance was determined using DeLong testing (**P < 0.01). (C) β-Diversity analysis of multiple CDI 
cohorts (training data sets 22–27) using collapsed Taxa4Meta species profiles. The pairwise Wilcoxon test with Benjamini-Hochberg correction shows 
that the difference between the disease and control groups is significant (***P < 0.001). (D) Improved cross-validation of CDI and control subjects using 
pan-microbiome profiles of 454 and Illumina data. Ten iterations of random, stratified subsampling of training sets were performed, and the random 
forest trainer was used for supervised classification analysis. The pairwise Wilcoxon test with Benjamini-Hochberg correction shows that the difference 
between the 2 groups is not significant. Data are presented as mean ± SD. Area under the curve (AUC) and classification accuracy (CA) were calculated, and 
the ANOSIM test was performed with 999 permutations.
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associations. However, individual clinical microbiome surveys 
often employ cohort-specific sequencing platforms, 16S primer 
regions, and bioinformatics pipelines, which we and others sys-
tematically demonstrate require a consolidated bioinformatics 
approach to mitigate technological and demographic bias, as well 
as taxonomic misclassification (24, 25). Our research findings 
indicate that previous microbiome meta-analyses have not ade-
quately addressed these limitations (20, 21, 26).

To address this gap, we developed Taxa4Meta, a bioinformat-
ics pipeline that ensures accurate taxonomic profiling by system-
atically benchmarking sequence orientation and length, so that 
data output can be reliably utilized from different 16S variable 
regions. Given the challenges of accurately merging OTU/ampli-
con sequence variant tables generated from different 16S variable 
regions, we implemented a new binning approach by collapsing 
taxonomic annotations of Taxa4Meta feature profiles, which facil-
itates meta-analysis of diverse 16S amplicon data.

Supervised classification is a significant downstream 
application of clinical microbiome surveys, particularly for GI 
diseases, where altered community dynamics are commonly 
observed (4, 5, 18, 19, 27–30). The construction of large, curated  
databases is typically required for diagnostic workflows to facil-
itate cohort-specific classifier training and cross-validation of 
disease-specific biomarkers. Population-scale meta-analysis 
is an appealing approach for powering microbiome surveys for 
disease classification, as it enables control of large variations in 
human genetics and demographics (2), as well as the technology 
bias (12) that contributes to false discovery rates. It is worth not-
ing that the application of the Taxa4Meta pipeline to identical 
DNA extracts sequenced using different strategies revealed sev-
eral prominent limitations in disease classification due to this 
bias. To overcome these technological hurdles, we developed a 
pan-microbiome profiling concept that achieves superior dis-
ease classification accuracy.

The initial step in enabling accurate case-controlled disease 
comparisons (2) is to establish a clear definition of the healthy 
human gut microbiome, as we have done in our study. We have 
also developed robust binary classifiers for CDI, IBD, and IBS using 
pan-microbiome profiles. These classifiers were independently 
validated using clinical and real-world population-scale cohorts 
that were excluded during the construction of our classification 
models. Our binary 16S-based classifiers exhibited superior clas-
sification accuracy compared with a previously reported shotgun 
metagenomics survey of IBD and IBS patients (27). While shotgun 
metagenomics profiling demonstrates high precision for species 
calls, the taxonomic abundance accuracy of the entire microbi-
ome community is heavily reliant on sequencing depth and the 
reference genome databases used (31). These limitations are less 
pronounced using 16S profiling because comprehensive databases 
are already available and higher detection sensitivity can be readi-
ly achieved using this method. Our application of the pan-microbi-
ome profiling strategy to population-scale 16S amplicon data also 
revealed prominent enterotypes that should be considered when 
developing clinical diagnostic pipelines.

Our study successfully employed Taxa4Meta as a prototypi-
cal pan-microbiome–based profiling strategy for diarrheal disease 
classification. However, there are several potential limitations 

(Supplemental Figure 14C). This divergence was particularly con-
spicuous using the Taxa4Meta classification models, which signifi-
cantly outperformed their DADA2-RDP counterparts across all 3 
categories of diarrheal diseases (Supplemental Figure 14D).

Finally, to ascertain whether antibiotic exposure represent-
ed the dominant determinant in categorizing a patient’s classifi-
cation as CDI, we undertook a series of subanalyses of the data 
sets in the meta-analysis. Notably, in primary instances of CDI in 
which no prior antibiotic exposure was reported, a comparable 
classification score and β-diversity clustering pattern were evi-
dent with both primary and recurrent cases where antibiotics were 
administered (Supplemental Figure 15A). Given the acknowl-
edged challenges in capturing accurate records of prior antibi-
otic exposure in CDI patients, we broadened our investigation 
to include healthy volunteers who underwent diverse antibiotic 
treatment regimens (Supplemental Figure 15B). Upon analysis of 
the longitudinal microbiome data of individuals subjected to sin-
gle antibiotic treatments, CDI classification scores were generally 
not achieved, especially with administration of broad-spectrum 
β-lactam antibiotics, which induced subtle gut microbiome alter-
ations (22). Although a transient CDI classification score became 
apparent in some individuals with clindamycin, this was not evi-
dent after ciprofloxacin exposure, both of which are recognized 
as high-risk antibiotics with regard to CDI development (23). 
Further, even though antibiotic use is common in IBD patients, 
our classification models still confidently differentiated IBD from 
CDI cases. These subanalyses unveil a distinct microbiome sig-
nature in CDI patients that is not exclusively associated with anti-
biotic exposure. These findings represent a significant advance in 
diarrheal disease classification, highlighting that compositionally 
distinct microbiome communities are discernible between infec-
tious colitis (CDI), IBD, and IBS patients.

Discussion
The field of microbiome science is a rapidly evolving area of 
research. Recent advancements in sequencing strategies and 
bioinformatics have significantly improved our understanding 
of host-microbiota interactions (1–3). Nonetheless, it is import-
ant not to disregard the value of retrospective microbiome data. 
The scientific community recognizes the significance of previ-
ous sequencing efforts that have investigated microbiome com-
munity dynamics in human pathogenesis (4, 5, 20, 21), as these 
studies could collectively offer vital insights into disease-specific 

Figure 5. Pan-microbiome diagnostic workflow for differentiating C. 
difficile infection, inflammatory bowel disease, and irritable bowel 
syndrome patients. (A) Binary classification models for CDI stratification 
(step 1) and IBD determination (step 2) using the microbiome training 
data sets from CDI, IBD, and IBS cohorts. All collapsed Taxa4Meta species 
features were utilized in training the classifier models. (B) Independent 
cohort validation of diarrheal classification models. The CDI score indicates 
the predictive score of the sample as a CDI case from the step 1 model, 
whereas the IBD score denotes the predictive score of the sample as an 
IBD case from the step 2 model. A binary threshold of 0.5 was applied for 
calculating disease classification accuracy. Statistical significance was 
determined using the pairwise Wilcoxon test with Benjamini-Hochberg 
correction (***P < 0.001). Cohort information of training and validation 
data sets is provided in Supplemental Table 3.
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Supplemental Table 5. During sequence extraction, an error rate of 0.2 
was permitted. For specific benchmarking purposes, further sequence 
length trimming, as well as random simulation of sequence abun-
dance and quality score, was performed as indicated below.

Benchmarking of sequence clustering and denoising using simulated 
amplicons with variable length
To benchmark the accuracy of clustering or denoising for amplicon 
data with variable sequence lengths, a random count ranging from 1 
to 50 was assigned to each parent full-length amplicon extracted from 
NCBI 16S rRNA RefSeq sequences. As traditional 454 data are typical-
ly generated from the reverse orientation, length trimming from either 
the forward or reverse orientation was applied to each type of ampl-
icon data, resulting in sequence lengths of 100, 150, 170, 200, 250, 
300, 350, 400, and 450 bases for V1–V3, V3–V5, and V6–V9 amplicon 
data and 100, 150, 170, 200, and 250 bases for V4 amplicon data. For 
sequencing denoising only, a random Phred quality score (ASCII_
BASE=33) ranging from 30 to 42 was assigned to each base. Each sim-
ulated amplicon of a specific sequence length represented 1 sample. 
All samples with the same sequence orientation from the same 16S 
region were included for closed-reference or de novo clustering using 
UCLUST (v1.2.22) (35) or VSEARCH (v2.9) (36), or denoising using 
DADA2 (v1.8) (37). Sequence similarity thresholds of 0.97, 0.99, and 
1.00 were evaluated for each clustering strategy. The comprehensive 
SILVA database (release 132) was used for closed-reference OTU pick-
ing. Because simulated amplicons of variable length originating from 
the same parent full-length amplicon had the same sequence counts, 
pairwise Spearman correlation analysis was performed for sequence 
counts of any 2 sequence lengths (as 2 independent samples) in the 
OTU count tables.

Benchmarking of taxonomic overclassification
Controlling false positives resulting from taxonomic overclassification 
of short amplicon data is an important consideration. To this end, the 
default parameters in the BLCA tool (11) and its default database NCBI 
16S rRNA RefSeq were used to annotate random and repeat sequences 
previously generated for benchmarking IDTAXA and other annotation 
tools (10). Full-length 16S amplicons of unannotated sequences (at least 
down to the family rank; 868,902 sequences) extracted from the RDP 
database (release 11.5) were used for further testing of BLCA. BLASTN 
search (38) of unannotated sequences against the NCBI 16S rRNA Ref-
Seq database confirmed that no best hits were identified at the 97% 
threshold applied to both sequence identity and coverage. Simulated 
amplicons of unannotated RDP sequences were tested using different 
thresholds of sequence coverage and identity ranging from 0.85 to 1.00 
in BLCA. Ten iterations of random subsampling (1%) and BLCA anno-
tation on those unannotated amplicons were performed to statistical-
ly determine the optimal sequence coverage and identity required for 
BLCA. Taxonomic overclassification rate was defined as the classifiable 
proportion of unannotated amplicons at the species level. The confi-
dence score of taxonomic assignment was not considered at this stage.

Benchmarking of taxonomic accuracy using simulated amplicons of 
variable length
To evaluate the taxonomic accuracy of BLCA, a series of simulat-
ed amplicons were generated by trimming of full-length amplicons 
obtained from NCBI 16S RefSeq from either forward or reverse  

associated with this approach. First, we relied on publicly depos-
ited cross-sectional metadata, which often lacked detailed clinical 
confounders such as disease activity, comorbidities, medication 
use, and dietary modulators including prebiotics and probiotics. 
Therefore, prospective clinical trials with detailed clinical meta-
data and dietary and pain symptom diaries are required to validate 
our diagnostic classifiers, with special attention paid to patients 
with overlapping comorbidities, for example, CDI cases with IBD 
symptoms. Second, the limited availability of clinical metadata 
prevented us from identifying all patients with potentially con-
founding antibiotic use. In addition, specific diarrheal subtype 
information was not available for all cases used in training IBD 
and IBS classification models. Further studies are required to gen-
erate disease subtype–specific classifiers, as well as more careful 
consideration of how to classify patients with no overt dysbiosis. 
Nevertheless, our meta-analysis was primarily focused on reliably 
differentiating CDI from IBD and IBS patients, and we show that 
many of these confounders are unlikely to adversely impact feasi-
bility. Third, although our classifiers are based on high-confidence 
genus-rank features, short 16S amplicon reads resulted in many 
unannotated species. Whole-genome sequencing (WGS) and 
16S long-read sequencing strategies could provide species- and 
strain-level annotation (32), but this requires a different profiling 
strategy. Additionally, retrospective data are currently not avail-
able to adequately power such a meta-analysis using deep or long-
read sequencing. In this regard, we demonstrate that Taxa4Meta 
features can be linked to WGS data in parallel analysis to provide 
deeper taxonomic insight if needed. Finally, sequencing depths 
between 454 and Illumina platforms significantly impact the sen-
sitivity of microbial detection. To avoid data rarefaction, which 
introduces bias to abundance profiles used for biomarker iden-
tification, we used a pan-microbiome approach. This approach 
minimizes technical variation for downstream classification, but 
it remains a common challenge for any microbiome meta-analysis 
that incorporates 454 data.

In summary, our study addressed a significant bioinformatics 
challenge by utilizing a new workflow (Taxa4Meta) to accurate-
ly cluster sequences and annotate taxonomy across multiple 16S 
regions. Taxa4Meta was applied to comprehensively reanalyze 
diverse 16S data sets generated from multiple retrospective GI 
disease cohorts investigated across four continents. By combining 
collapsed species abundance for each 16S data set, we success-
fully interpreted the downstream microbiome and performed 
supervised classification of diarrheal patients who are difficult to 
diagnose because of overlapping symptoms. This “best practices” 
approach allowed us to develop a prototypical diagnostic workflow 
based on disease-specific pan-microbiome biomarkers.

Methods

Simulation of full-length and region-specific 16S amplicon data
Two reference databases were used for data simulation: the NCBI 
16S rRNA RefSeq database (downloaded in July 2019) and the Ribo-
somal Database Project (RDP) database (release 11.5) (33). To extract 
sequence fragments as full-length amplicons of targeted 16S variable 
regions (V1–V3, V3–V5, V4, and V6–V9), the cutadapt tool (version 
2.4) (34) was used, based on the forward and reverse primers listed in 
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was known for the simulated data, the NCBI 16S taxonomic lineage 
was used as a reference annotation (ground truth) for the comparison 
of different taxonomic profilers.

The Korean stool microbiome data set (12) was utilized as a real-
world microbiome data set for the benchmarking of different 16S 
pipelines. Identical DNA extracts were sequenced using 454 V1–V4, 
Illumina V1–V3, Illumina V3–V4, Illumina V4, and Illumina shotgun 
metagenomic sequencing. To prepare the data set for benchmark-
ing, primers retained in the sequence reads were removed by posi-
tional trimming, and Illumina paired-end reads were merged using 
USEARCH (v8.1.1831) with default parameters. 16S pipelines were 
tested, including EzBiome, DADA2-IDTAXA, DADA2-RDP, UCLUST-
UCLUST, USEARCH-RDP, Taxa4Meta, Kraken2, and MetaPhlAn2. 
These were benchmarked using the aforementioned simulated ampl-
icons and healthy human fecal microbiome data set. Collapsed taxo-
nomic profiles from each pipeline were generated using the total sum 
scaling method without rarefaction procedure. The specific analysis 
procedure for each pipeline is described below.

EzBiome pipeline. In EzBioCloud, the 16S microbiome taxonomic 
profiling (MTP) pipeline together with its pre-built database PKSSU4.0 
was used for analysis of 16S data using default parameters. Since its 
output contains many genome accession IDs for species annotation, its 
species profile was not compared with the MetaPhlAn2 species profile.

DADA2-IDTAXA pipeline. DADA2 (v1.8) was used to denoise 
amplicon data after quality filtering with a maximum expected error of 
2 and a minimum length of 200 bases. IDTAXA together with its pre-
built RDP training set (version 16; curated by program developer) was 
used for taxonomic annotation (down to genus rank) with confidence 
threshold of 70 using 100 bootstraps.

DADA2-RDP pipeline. DADA2 (v1.8) was used to denoise ampl-
icon data after quality filtering with a maximum expected error of 
2 and a minimum length of 200 bases. RDP Naive Bayesian Classi-
fier algorithm implemented in DADA2’s assignTaxonomy function 
together with its preformatted RDP training set (version 16) was used 
for taxonomic annotation (down to species rank) using minimum 
bootstrap confidence of 50.

UCLUST-UCLUST pipeline. UCLUST (v1.2.22q) was used to clus-
ter amplicon data with 97% sequence similarity after quality filtering 
with a minimum quality threshold of 20 and a minimum length of 
140 bases. Representative sequences of OTUs were selected using 
pick_rep_set.py script default parameters. UCLUST implemented in 
assign_taxonomy.py script together with the SILVA database (release 
123; choice of silva_132_97_16S.fna) was used for taxonomic annota-
tion, down to species rank using minimum bootstrap confidence of 
0.5. All procedures were completed in the QIIME platform (v1.9.1) 
(39). This pipeline is similar to the meta-analysis method used by 
Mancabelli et al. (21).

USEARCH-RDP pipeline. USEARCH was used to cluster amplicon 
data with 100% sequence similarity after quality filtering with a max-
imum expected error of 2 and a minimum length of 200 bases. RDP 
classifier (v2.12) together with RDP training set (v16) was used for 
taxonomic annotation down to species rank using minimum bootstrap 
confidence of 0.5. This pipeline is similar to the meta-analysis method 
used by Duvallet et al. (20).

Taxa4Meta pipeline. Taxa4Meta (v1.22) was used to cluster ampli-
con data after quality filtering with maximum expected error of 2 and 
selected range of variable lengths as described above. Taxonomic 

orientation, resulting in variable sequence lengths (100, 150, 170, 200, 
250, 300, 350, 400, and 450 bases for V1–V3, V3–V5, and V6–V9 ampl-
icon data, and 100, 150, 170, 200, and 250 bases for V4 amplicon data). 
The known taxonomic lineage of the parent 16S sequences of the sim-
ulated amplicons was present in the BLCA default reference database, 
allowing for the evaluation of taxonomic misclassification. The mis-
classification rate was defined as the proportion of incorrectly annotat-
ed simulated amplicons with known taxonomic lineage. To determine 
the optimal confidence threshold of BLCA for mitigating misclassifica-
tion, simulated amplicons with selected sequence length ranges were 
combined to calculate the proportion of correct versus incorrect anno-
tations using defined thresholds. The true-positive and false-negative 
hits were used to represent correct annotations, while true-negative 
and false-positive hits represented incorrect annotations, given the 
known taxonomic lineage of the data input.

Design of the Taxa4Meta pipeline
Based on our benchmarking results, we developed a computation-
al pipeline named Taxa4Meta for analyzing 16S amplicon data. 
This pipeline incorporated various open-source programs such as 
VSEARCH (36) for stringent clustering at 99% identity optimized 
for 16S amplicon data with selected variable lengths, BLCA (11) with 
optimal region-specific confidence thresholds for stringent taxonomic 
annotation of OTUs, and IDTAXA (10) for annotating OTUs that could 
not be identified by BLCA using identity and coverage thresholds of 
99% during sequence alignment against NCBI 16S RefSeq sequences. 
Since merging de novo OTU tables from different 16S variable regions 
can be challenging, we used collapsed taxonomic profiles from OTU 
tables for downstream analysis during 16S meta-analysis. To generate 
relative abundance of collapsed taxonomic profiles without rarefac-
tion for OTU tables, we used total sum scaling. However, it is worth 
noting that controlling the batch effect, i.e., removing contaminated 
reads from different sequencing labs, is not feasible in this pipeline 
because data of negative controls and sample DNA yields were com-
monly missing in publicly available data sets.

Benchmarking of taxonomic profiling accuracy using Taxa4Meta 
versus other 16S pipelines
We evaluated the feasibility and accuracy of commonly used 16S 
pipelines for processing simulated and experimental data sets (12, 
28) to achieve precise sequence clustering and enhanced taxonomic 
accuracy. The simulated data sets were derived from the NCBI 16S 
RefSeq database and included full-length amplicons of V1–V3, V3–V5, 
V4, and V6–V9. Each full-length amplicon was randomly assigned a 
sequence count between 1 and 50, and a Phred quality score (ASCII_
BASE=33) ranging from 30 to 42. Further trimming was performed for 
each amplicon from the forward and reverse orientations to generate 
different sequence lengths for each variable region: V1–V3 forward 
amplicons (200, 250, 300, 350, 400, and 450 bases), V1–V3 reverse 
amplicons (300, 350, 400, and 450 bases), V3–V5 forward amplicons 
(250, 300, 350, 400, and 450 bases), V3–V5 reverse amplicons (300, 
350, 400, and 450 bases), both forward and reverse amplicons of V4 
(200 and 250 bases), V6–V9 forward amplicons (300, 350, 400, and 
450 bases), V6–V9 reverse amplicons (250, 300, 350, 400, and 450 
bases). Trimmed amplicons from the same sequence orientation of 
each 16S variable region were combined into a single sample to enable 
benchmarking of various 16S pipelines. As the sequence abundance 



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2024;134(2):e170859  https://doi.org/10.1172/JCI1708591 4

Microbiome meta-analysis of diarrheal microbiome data sets
Each diarrheal data set was processed through the Taxa4Meta 
pipeline using optimal taxonomic thresholds for each 16S variable 
region. The specific Taxa4Meta command used for each data set is 
indicated in Supplemental Table 3. The relative abundance of col-
lapsed species profiles generated from each Taxa4Meta OTU count 
table was used without rarefaction, but a minimum of 1,000 reads 
per sample was required. If a species was assigned by Taxa4Me-
ta-BLCA, the taxonomic lineage from NCBI 16S RefSeq was adopt-
ed for that species to avoid any inconsistencies in the taxonomic lin-
eage. The merging of Taxa4Meta collapsed profiles from all data sets 
was based on the taxonomic lineages. In calculating the percentage 
of classifiable sequences generated by Taxa4Meta, only clean reads 
that passed QC were used for proportional calculations, excluding 
reads assigned as human or PhiX sequencing controls. For bench-
marking of the classification performance of input taxonomic pro-
files generated by Taxa4Meta, a side-by-side comparison with the 
DADA2-RDP pipeline was performed across all the meta-analysis 
training and validation cohorts.

Diversity and pathobiome analyses
Two α-diversity indices were calculated at OTU level: the Shannon 
index (alpha_diversity.py in QIIME v1.9.1) and the richness index 
(breakaway package v4.7.5). Unless otherwise stated, principal coor-
dinate analysis (PCoA) with abundance-weighted Jaccard distance  
metric was applied for β-diversity analysis using combined col-
lapsed species-rank profiles in QIIME v1.9.1. Analysis of similarities 
(ANOSIM) test for group comparison was performed using the β-di-
versity distance profile and 999 permutations.

The taxonomic abundance of potential pathobionts (pathobiome) 
including Enterococcus, Streptococcus, Clostridioides, Escherichia/Shi-
gella, Klebsiella, and Pseudomonas was calculated for each sample. Kull-
back-Leibler (KL) divergence analysis was performed between any 2 
specific populations in the meta-analysis training cohorts: the relative 
abundance of pathobiome in each disease or case-control population 
was normalized using the total sum scaling method prior to analysis 
using the KL() function in the R package philentropy (v0.7.0).

Hierarchical clustering and heatmap visualization
At the OTU level, two α-diversity indices were computed: the Shan-
non index and the richness index. The Shannon index was calculat-
ed using the alpha_diversity.py script from QIIME v1.9.1, while the 
richness index was computed using the breakaway package v4.7.5. 
For β-diversity analysis, the PCoA with an abundance-weighted Jac-
card distance metric was used, unless explicitly stated otherwise. The 
combined collapsed species-rank profiles were used for β-diversity 
analysis in QIIME v1.9.1. To highlight less abundant microbiome fea-
tures, relative abundance profiles from each 16S pipeline and WGS 
pipeline were transformed using a –log2 calculation, and the imputed 
value for microbiome features with a relative abundance of zero prior 
to clustering analysis was set as the maximum value of all transformed 
data. The R package pheatmap (v1.0.12) was used for heatmap gen-
eration and hierarchical clustering analysis. Clustering analysis was 
performed using the default parameters, with the Euclidean distance 
measure and complete method. Abundance-based Spearman correla-
tion analysis was performed for species (L7 rank) and parent genera 
(L6 rank) for the entire training set.

annotation was provided down to species rank. Benchmarking of Tax-
a4Meta confidence thresholds was performed using the previously 
described Korean human microbiome data set with (a) Tolerant set-
ting: genus score of 0 and species score of 0; (b) Strict setting: genus 
score of 100 and species score of 100; (c) Default region-specific opti-
mized thresholds in Taxa4Meta.

Metagenomic pipelines. Paired-end sequences were trimmed and 
filtered to meet a maximum expected error of 2 with a minimum read 
length of 50. Kraken2 (v2.0.8) with its pre-built database (minikrak-
en2_v2_8GB_201904_UPDATE) with default parameters was used 
for taxonomic profiling of shotgun metagenomic data. MetaPhlAn2 
(v2.7.7) with its default database (mpa_v20_m200) and default param-
eters was used for taxonomic profiling of shotgun metagenomic data. 
Kraken2 family-level abundance results were used as the reference for 
comparisons across different 16S pipelines. Given the high precision 
of species identification, MetaPhlAn2 species-level abundance results 
were used as the reference for evaluating species calls by different 
16S pipelines. A pseudo-sample was created by averaging of each spe-
cies-level or family-level abundance of all 27 WGS samples; then the 
Spearman correlation or abundance-weighted Jaccard distance was 
calculated between the pseudo-sample and real-world samples ana-
lyzed by the different pipelines.

Patient cohorts and clinical definitions
In this study, a meta-analysis was conducted using 27 patient cohorts 
with available raw 16S sequencing data that had been previously pub-
lished. An additional 13 patient cohorts were used for independent 
validation purposes (Supplemental Table 3). Of the 40 data sets that 
were initially considered, it was found that 5 did not have any publi-
cations documenting specific clinical metadata. For the majority of 
cohorts, sample grouping information was available after NCBI Bio-
Sample registration during data deposition. In cases in which group-
ing information was missing, contact investigator follow-up was con-
ducted for individual studies. For CDI cohorts, symptoms of diarrhea, 
PCR-based toxin gene detection, and enzyme immunoassay tests for 
C. difficile toxins were commonly reported for diagnosis per the 2017 
Infectious Diseases Society of America/American Gastroenterolog-
ical Association guidelines (40). However, it was noted that 2 Mayo 
cohorts (training data sets 24 and 25) (41, 42) may not have adopted 
this practice. For IBD diagnosis, colonoscopy, Montreal classification, 
and disease activity index were used in the majority of cohorts (43, 44). 
Disease severity in UC was measured using several quantitative meth-
ods, including the Mayo score and the Simple Clinical Colitis Activ-
ity Index, which have been found to correlate well with endoscopic 
disease activity (43). For CD diagnosis, the Crohn’s Disease Activity 
Index is commonly used (44). It should be noted, however, that the 
disease status was not clearly indicated for all patients and specimens. 
Therefore, data collected during active and remission stages were 
combined for meta-analysis and classification. Diagnosis of IBS and its 
disease status relied on a questionnaire and the Rome III criteria (45). 
Cases of IBD and IBS in 2 large-scale community data sets, namely the 
American Gut and LifeLines-Deep cohorts, contained self-reported 
metadata of prior clinical diagnosis provided by a physician and were 
only used for classifier validation. It should be noted that, since fecal 
samples from the American Gut cohort were transported at room tem-
perature, microbial blooms (i.e., Gammaproteobacteria) were filtered 
out of the final taxonomic profiles, as previously described (15).
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or Pearson correlations, we used the Benjamini-Hochberg FDR (P < 
0.05, considered statistically significant). Unless stated otherwise, 
box plots are presented with the interquartile range (IQR), median, 
and whiskers extended to values less than 1.5 × IQR from the first and 
third quartile, respectively.

Study approval
The study used deidentified sequencing and metadata available through 
publicly available databases with prior institutional IRB approval.

Data availability
Data accession numbers and reference to publicly available 16S data 
sets including 1 restricted data set (LifeLines-Deep cohort) are list-
ed in Supplemental Table 3. Values for all data points are available in 
the Supporting Data Values file.

The source code for the Taxa4Meta pipeline is available at 
https://github.com/Savidge-lab/Taxa4Meta (Commit ID: 77dec14e-
0b41579ac02b724f9b957e640a833f06). Scripts for amplicon data 
simulation and benchmarking analyses can be accessed at https://
github.com/Savidge-lab/Taxa4Meta-ParameterBenchmarking 
(Commit ID: 5a1b007359c689edfe6eda390a612f711ca2f748).
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Fitting factors onto β-diversity ordination plot
The process of placing fitting factors, or taxa, onto a 2-dimensional 
ordination plot based on the first 2 coordinates was carried out using 
the envfit function found in the vegan package (v2.5-7). To facilitate a 
side-by-side comparison, the taxonomic abundance profile at the fam-
ily-rank level was used in this analysis. To establish the significance of 
the fitted factors, 999 permutations were implemented in the envfit run.

Supervised classification and independent cohort validation
All supervised classification procedures were executed using Orange 
software (v3.20) (46) on the reported cohorts with clinical defini-
tions. To maintain consistency with previous studies, we adopted the 
original sample grouping information from each cohort, using gold 
standard diagnostic criteria for CDI, IBD, and IBS. In order to select 
the top 100 input taxa features for downstream supervised learning, 
we used random forest–based feature ranking as a first pass. All input 
samples were used for training, unless subsampling of samples was 
performed. Individual learning algorithms, including random forest 
(RF), support vector machine (SVM), naive Bayes (NB), and neural 
network (NN), were used for supervised classification. Furthermore, a 
stack model was evaluated as an aggregated meta-learner of RF, SVM, 
and NB. A 5-fold cross-validation method was applied for subsam-
pling of training and test data during training, unless otherwise spec-
ified. The training results were subjected to receiver operating char-
acteristic and precision-recall analyses using the R package precrec 
(v0.14.2), and values of area under the curve (AUC) and classification 
accuracy (CA) were calculated to evaluate the performance of each 
classification model. CA represents the proportion of correctly pre-
dicted samples from the classification model in comparison with the 
original clinical diagnosis. Independent validation of classification 
models was performed using data sets of recently published micro-
biome surveys of human diarrheal diseases that were not included in 
the training set. Taxonomic profiles were generated for validation of 
classification models using the Taxa4Meta pipeline and DADA2-RDP 
pipeline. CDI and IBD scores refer to the predicted scores of each 
sample from the binary classifier of the respective disease diagnosis.

Statistics
In the absence of any other specifications, we conducted compari-
sons between 2 groups using the nonparametric Mann-Whitney-Wil-
coxon 2-tailed test. Likewise, comparisons involving more than 2 
groups were made using the nonparametric Kruskal-Wallis 2-tailed 
test. To account for multiple comparisons and pairwise Spearman 
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