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Introduction
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum 
of liver disease characterized by progressive steatosis and inflam-
mation, leading to the more serious nonalcoholic steatohepatitis 
(NASH), which can precede cirrhosis and liver cancer (1). NAFLD 
is now the most common liver disease worldwide, affecting 80% 
of obese adults and 40% of all adults in the United States (2). 
There are limited insights into the origin and underlying mecha-
nisms of pediatric-onset NAFLD, which is arguably more severe 
and aggressive (3). NAFLD prevalence ranges from 0.7% in young 
children aged 2–4 years, to approximately 40% in obese children 
(4). The prevalence of NAFLD increased approximately 3-fold 
from the late 1980s to the present (4). Young children are now 
more likely than ever to experience early onset and increased 
severity of obesity and, importantly, in utero exposure to maternal 
obesity and insulin resistance, which exacerbate NAFLD risk (5).

The pathologic mechanisms underlying NAFLD are com-
plex and multifactorial but center on altered mitochondrial func-
tion that might precede the development of NAFLD (6). Human 
studies describe increased intrahepatocellular lipid storage in 
infants born to obese mothers (7, 8). In later life, these offspring 
are at a higher risk of progressing to obesity, NAFLD, cardiovas-
cular disease, and hepatic carcinoma (9–11). The in utero environ-
ment’s critical importance to pediatric NAFLD is illustrated in a 
cross-sectional study of 538 children with biopsy-proven NAFLD. 

Those born with higher or lower birthweight had a 2-fold greater 
incidence of NAFLD, even after adjusting for childhood BMI (12). 
Here, we review the literature supporting the influence of gesta-
tional exposures, including maternal obesity, Western-style diet 
(WSD), and gestational diabetes mellitus (GDM), on mitochondri-
al function in the pathophysiology of pediatric NAFLD and pro-
gression to NASH. Through animal models, including nonhuman 
primates (NHPs), and limited human investigations, we demon-
strate the importance of fetal metabolic programming in NAFLD, 
especially as it pertains to mitochondrial function. Finally, we 
review potential interventions preventing the early development 
of NAFLD in at-risk offspring.

Neonatal predisposition to pediatric NAFLD
Growing evidence suggests that individuals who develop pediat-
ric NAFLD are born with predisposed risk. Severity of childhood 
NAFLD correlates with maternal obesity (13), birthweight (14), 
and shorter duration of breastfeeding (13, 15), even after adjust-
ing for childhood BMI. The fetal programming hypothesis, that 
environmental conditions during critical periods influence long-
term physical development, was first suggested by David Barker 
regarding maternal undernutrition and low-birthweight infants 
(16). From the early 1990s to the present, however, human epi-
demiologic studies combined with functional studies in animal 
models have demonstrated that increased maternal BMI, insulin 
resistance, and high-fat diet (HFD) all contribute to increased 
risk of metabolic disease in offspring later in life. Mothers enter-
ing pregnancy with preexisting insulin resistance, such as those 
with obesity or GDM or consuming a WSD (high in both fat and 
sugar), display an overabundance of maternal metabolic sub-
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tional) and/or obesity. In one study, 105 neonates (mean age 11 
days) of mothers with a BMI ranging from underweight to obese 
(16–36 kg/m2) were characterized based on adipose tissue and 
hepatic lipid content using MRI and NMR spectroscopy (8). Neo-
natal hepatic fat content, as well as total adiposity, correlated 
with maternal BMI after correcting for infant sex and gestational 
age (8). Using a noninvasive MRI method, we described a 68% 
increase in hepatic lipid content in the 2-week-old offspring of 
mothers with obesity and GDM versus normal-weight mothers 
(7). In this study and the former study, follow-up hepatic MRIs 
were not performed at a later age. Therefore, neither the per-
sistence of increased intrahepatic fat nor the risk of these infants 
going on to develop NASH was assessed. Finally, in another 
study, 78% of stillborn offspring of obese mothers with diabetes 
(n = 33) had evidence of hepatic steatosis versus 17% of stillborn 
offspring of nondiabetic mothers (n = 48) (20). Diabetes in this 
study was predominantly gestational (n = 22), but mothers with 
preexisting diabetes were included as well (20).

strates (17). The fetus might be especially vulnerable to steato-
sis because immature fetal adipose depots that buffer the excess 
transplacental lipids or other fuels in maternal obesity are not 
available until late in gestation. Excess substrates contribute not 
only to excess fetal growth but also to increased risk for child-
hood obesity and metabolic disease. Maternal metabolites that 
indicate altered mitochondrial function and are associated with 
maternal overnutrition include excess glucose, fatty acids (FAs), 
triglycerides, branched-chain amino acids (BCAAs), and long-
chain acylcarnitine species. These are elevated in maternal plas-
ma during pregnancy (17), are found in cord blood at birth (18), 
and are intimately associated with maternal BMI, insulin resis-
tance in pregnancy, high maternal dietary fat intake, and high 
infant birthweight (19).

Limited human data suggest that the maternal environment 
is important for NAFLD pathogenesis extremely early in life. 
The most direct evidence derives from a handful of studies in 
offspring of mothers with diabetes (gestational and pregesta-

Figure 1. Overview of the early development of 
NAFLD and progression to NASH in offspring 
of overnourished mothers. Based on nonhu-
man primate and limited human data, offspring 
exposed to overnutrition in utero have increased 
hepatic lipid storage and de novo lipogenesis, 
coupled with incomplete β-oxidation and dimin-
ished electron transport chain (ETC) activity, 
leading to accumulation of long-chain acylcar-
nitines (LCACs) and diminished ATP production. 
Anaplerosis through branched-chain amino acid 
(BCAA) catabolism compensates for limitations 
in TCA cycle intermediates. This fuel overload 
and excess in lipid result in production of ROS. 
Damage is mitigated by glutathione (GSH) and 
upregulation of SIRT1 (SRT). Hepatic apoptosis 
is minimal (but existing). As time progresses and 
damage, inflammation, and lipid accumulation 
worsen, mitochondria develop structural abnor-
malities and diminish in content and activity. 
This is exacerbated by diet and the microbiome. 
β-Oxidative function and ETC activity worsen. 
Intramitochondrial lipid and acylcarnitine accu-
mulation leads to increased ROS and reactive 
nitrogen species (RNS) production. Glycogen and 
smooth ER accumulate. BCAA catabolism is less 
efficient and is unable to supplement the TCA 
cycle, and GSH is no longer able to dampen oxi-
dative damage. Inflammation due to infiltration 
and activation of immune cells and apoptosis 
worsen, leading to liver injury and fibrosis. FA, 
fatty acid; TG, triglyceride.
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nal BMI was associated with cord blood BCAAs and their catabo-
lites propionylcarnitine (C3), butyrylcarnitine/isobutyrylcarnitine 
(C4/Ci4), and isovalerylcarnitine (C5) (18). Maternal glucose was 
associated with cord blood levels of ketone 3-hydroxybutyrate, its 
carnitine ester, 3-hydroxy-decanoyl carnitine (C10OH or C8DC), 
and glycerol (18). These biomarkers are classically linked to hepat-
ic and skeletal muscle mitochondrial dysmetabolism, as well as 
insulin resistance and risk of type 2 diabetes in adults.

In our unpublished analysis of neonatal plasma at 48 hours 
of life, we found markers of incomplete mitochondrial lipid 
oxidation (medium-chain and dicarboxylic acylcarnitines) and 
higher C5 relative to neonatal adiposity in offspring of over-
weight/obese, but not normal-weight, mothers (24). C5 is a 
marker of insulin resistance and related compensatory increased 
BCAA catabolism (25, 26). Interestingly, our proteomic analysis 
revealed enrichment of the BCAA catabolism pathway relative to 
neonatal adiposity in offspring of overweight/obese, but not nor-
mal-weight, mothers (24).

Stem cells from offspring of obese mothers might also pro-
vide clues regarding in utero programming of altered mitochon-
drial function. Using umbilical cord–derived mesenchymal stem 
cells (MSCs), we demonstrated relationships between maternal 
pre-pregnancy BMI, maternal circulating lipids during pregnan-
cy, neonatal adiposity, and adiposity gain in the first few months 
of life with markers of altered mitochondrial function (27–30). It 
should be noted that although the MSCs studied were induced 
to differentiate toward adipocytes and myocytes, these same 

No neonatal studies looking at prospective development of 
NAFLD or testing biomarkers in the setting of increased neonatal 
hepatic lipid accumulation in humans have been reported. Early 
detection of NAFLD is challenging because of difficulties of tissue 
sampling and of performing potentially invasive studies on other-
wise asymptomatic children. The Avon Longitudinal Study of Par-
ents and Children (ALSPAC) demonstrated that offspring of insu-
lin-resistant mothers were at higher risk for signs of NAFLD at 17 
years of age versus offspring of mothers without insulin resistance 
(21). Increased maternal BMI was also associated with NAFLD in 
offspring, largely owing to its correlation with offspring adiposi-
ty (21). The Western Australian Pregnancy (Raine) Cohort Study 
reported similar results: increased maternal pre-pregnancy BMI 
conferred sex-specific risk for NAFLD in offspring at 17 years of 
age (22). Offspring of obese or diabetic mothers born with intra-
uterine growth restriction (IUGR) have a predisposition to develop 
NAFLD (23). Undernutrition in pregnancy can also result in IUGR 
in offspring and predispose offspring to develop metabolic syn-
drome and NAFLD (23).

Noninvasive analyses examining blood from offspring of obese 
and/or insulin-resistant mothers offer more insight into potential 
mitochondrial mechanisms of hepatic lipid accumulation in the 
setting of fetal programming. The Hyperglycemia and Adverse 
Pregnancy Outcome (HAPO) study, one of the largest studies to 
date, examined metabolites in neonates in relation to maternal 
obesity (18). Metabolomic analyses on cord blood from 1,600 
mother-infant pairs spanning four ethnicities showed that mater-

Table 1. Genes associated with mitochondrial function and risk for NAFLD

Gene Function
ADIPOQ (160) Stimulates fat metabolism via AMPK pathway activation and mitochondrial biogenesis stimulation (161)

GCKR (162) Regulates hepatic glucokinase in response to fructose metabolites; glucokinase is important in mitochondrial apoptotic processes (163),  
mitochondria-associated AMPK signaling, and oxidative stress (164)

HIF3A (63, 165) Hypoxic response gene that inhibits/attenuates HIF1A oxidative response; reduced HIF1A is related to mitochondrial dysfunction (166, 167)  
and production of ROS (168) in the setting of hepatocellular injury; HIF family of genes are linked to mitochondrial energy metabolism (169)

HO-1 (HMOX1) (170) Hypoxic response gene that directly regulates mitochondrial electron transport chain function via FOXO1 (171) and stimulates mitochondrial  
biogenesis (172); together with mitochondrial integrity, mediates lipid droplet formation in stress (173) and HFD via SIRT1 (174)

LPIN1 (175) Catalyzes final steps of triglyceride synthesis; acts as a nuclear transcriptional coactivator for PGC1α/PPARA to modulate lipid metabolism gene 
expression; is potentially involved with mitochondrial fission; regulates mitochondrial FA oxidation in response to oxidative stress (176)

MBOAT7 (177) Involved in mitochondrial phospholipid metabolism specifically contributing to regulation of arachidonic acid, affected in oxidative stress and 
inflammation; resides in mitochondrial membrane (178)

MNSOD (SOD2) (179–181) Binds to superoxide by-products of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen; directly involved in  
the oxidative stress response (182); enzyme activity directly linked to NAFLD (180, 181)

MTP (MTTP) (179) Catalyzes transport of triglyceride, cholesteryl ester, and phospholipid between phospholipid surfaces; mitochondrial secretory molecules regulate its 
function in controlling hepatic and whole-body lipid content (183); interactions with mitochondrial protein expression associated with fatty liver (184); 
suggested role in mitochondrial biogenesis and fetal programming (154, 185)

PHB (186, 187) Acts as a mitochondrial chaperone important for growth, apoptosis, and mitochondrial remodeling in adipocytes (188)

PPARGC1A (PGC1A) (189) Key upstream transcriptional regulator of mitochondrial metabolism and biogenesis; epigenetically regulated in the development of NAFLD (67)

SAMM50 (160, 190) Mitochondrial membrane transporter that plays a crucial role in maintenance of the structure of mitochondrial cristae and proper assembly of 
mitochondrial respiratory chain complexes (191, 192)

TM6SF2 (162, 193, 194) Transcriptional regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content (195), impacting lipid used in 
mitochondrial FA oxidation (196)

UCP2 (197) Separates oxidative phosphorylation from ATP synthesis with energy dissipated as heat (mitochondrial proton leak); directly related to obesity  
and insulin resistance and functionally linked to mitochondrial pathophysiology in NAFLD (198–200)
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and Genomes (KEGG) NAFLD disease pathway as well as upreg-
ulation of mitochondrial oxidative phosphorylation genes relative 
to rapid infant gain in adiposity (28).

Hepatocellular changes and fetal programming 
in NAFLD
Fetal hepatic metabolism is unique in that the fetus develops in a 
low-oxygen environment with limited capacity for lipid and ami-
no acid oxidation until birth (35, 36). Compared with adult livers, 
the fetal liver has fewer mitochondria, lower activity of carnitine 
palmitoyl-CoA transferase-1 (CPT1, the enzyme responsible for 
mitochondrial FA transport), and little or no gluconeogenesis 
(37). These data suggest that the fetal liver is uniquely vulnerable 
to dysregulated fuel metabolism caused by excess fuel exposure 
due to maternal obesity or poor diet. However, few studies have 
investigated whether impaired mitochondrial function exists in 
the fetus, despite numerous studies in postnatal human and ani-
mal models (38–40).

We have described lipotoxic effects of maternal HFD in fetal 
NHP livers, including increased hepatic triglyceride storage and 
oxidative stress early in the third trimester, consistent with the 
development of NAFLD (41). PPARGC1A gene expression and 
PGC1α enzyme activity were increased (41), suggesting that mito-
chondrial biogenesis upregulates possibly in response to increased 
oxidative stress. Insulin-resistant NHP dams on HFD demon-
strated increased body mass, higher triglycerides, and increased 
placental cytokines (42). Offspring of these dams had increased 
liver triglycerides and upregulated hepatic de novo lipid synthesis 
at 1 year of life despite weaning to a healthy diet (42). Irreversible 
hepatic inflammation was observed even in the absence of obesity 

precursor cells are known to populate the liver as hepatic stellate 
cells, which are intricately involved in hepatic fibrosis (31, 32). 
In myocyte-differentiated MSCs, accumulation of long-chain 
and dicarboxylic acylcarnitines correlated with neonatal adipos-
ity particularly in offspring of obese mothers (27). In differential 
gene expression analysis, we observed that pathway enrichment 
for multiple metabolic processes corresponds to maternal BMI 
(27). Adipocyte-differentiated MSCs demonstrated broad chang-
es in mitochondrial gene expression related to maternal FA levels 
in the second trimester. There was upregulation of multiple elec-
tron transport chain (ETC) genes coupled with downregulation 
of genes related to mitochondrial biogenesis, including CREBBP, 
EP300, and PPARA (27). Also, pathway enrichment was observed 
for nutrient-sensing pathways, including PI3K/AKT and AMPK, 
relative to maternal BMI (27).

Rapid gain in adiposity in the first 5 months of life is a known 
risk factor for childhood obesity and metabolic syndrome and is 
a risk marker for NAFLD (33, 34). In infants with rapid gains in 
adiposity, we found markers of incomplete lipid oxidation and 
upregulation of membrane lipid transport genes in their MSC-de-
rived adipocytes (28). We further found alterations in analytes and 
genes in the glutathione cycle, including higher cysteine concen-
trations and upregulation of GCLC, the rate-limiting step in glu-
tathione synthesis and ophthalmate generation (28). Oxidative 
stress was greater, as suggested by upregulation of SOD2 and HIF1 
gene expression in MSCs (28). Taken together, these findings sug-
gest that rapid gain in adiposity in an infant’s first months of life 
corresponds with potentially lipotoxic alterations in their stem 
cells. More germane to the discussion of hepatic disease, we also 
found upregulation of genes in the Kyoto Encyclopedia of Genes 

Figure 2. Evidence of Fetal Programming in Human Mesenchymal Stem Cells. Human mesenchymal stem cells (MSCs), progenitors to hepatic stellate 
cells (HSCs), demonstrate evidence of fetal programming in relation to maternal obesity, maternal circulating lipids, and neonatal adiposity and adiposity 
gain over time. These cells have exhibited lipid transport and accumulation, incomplete β-oxidation, increased anaplerosis, and diminished ETC activity. 
Oxidative stress is coupled with increased GSH metabolism, and gene expression indicates alterations in nutrient sensing along with increased apoptotic 
and inflammatory signaling. OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane; CACT, carnitine-acylcarnitine translocase; DCAC, 
dicarboxylic acylcarnitines.
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some insight into epigenetic modifications present in pediatric 
NAFLD. One of the few pediatric studies investigating epigenetic 
changes in NAFLD-affected children found that elevations of ala-
nine aminotransferase were associated with HIF3A methylation, 
suggesting that epigenetic changes in the oxidative stress response 
predispose children to NAFLD (63). In adult humans, evidence is 
more robust that epigenetic alterations can affect mitochondrial 
metabolism specifically through differential methylation of genes 
related to mitochondrial and lipid metabolism (64). Mitochon-
drial mRNA and protein expression, particularly of NADH dehy-
drogenase 6 (MT-ND6), was significantly decreased in livers of 
NASH patients versus simple steatosis patients (65). In genomic 
DNA, the epigenetic marker 5-hydroxymethylcytosine was relat-
ed to liver mtDNA copy number and PPARGC1A mRNA levels 
in NAFLD patients versus control groups (66). In biopsied livers 
from NAFLD patients, PPARGC1A methylation (and diminished 
gene expression) correlated positively with insulin resistance, and 
methylation of TFAM (transcription factor A, mitochondrial) has 
correlated negatively with insulin levels (67). Mitochondrial con-
tent is diminished in NAFLD livers, inversely correlating with 
HOMA-IR (a measure of insulin resistance), fasting glucose, insu-
lin, and PPARGC1A promoter methylation (67).

Acetylation patterns also play a role in programmed NAFLD 
pathogenesis. In our NHP model, maternal HFD induced fetal 
NAFLD and modulated fetal hepatic SIRT1 histone and protein 
deacetylase activity (68). SIRT1 is both a lysine deacetylase and a 
crucial sensor of cellular metabolism. We have demonstrated that in 
utero exposure to a maternal HFD, but not necessarily maternal obe-
sity, increased fetal H3K14 histone acetylation with a concomitant 
decrease in SIRT1 expression and diminished in vitro protein and 
histone deacetylase activity (68). This was tied to altered expression 
of known downstream effectors that are deregulated in NAFLD and 
modulated by SIRT1, including PPARA, PPARG, SREBF1, CYP7A1, 
FASN, and SCD (68). Further studies found that inhibiting SIRT1 
signaling in human fetal hepatocytes rapidly led to increases in intra-
cellular glucose and lipid levels (69). Both de novo lipogenesis- and 
gluconeogenesis-related genes were upregulated upon SIRT1 inhi-
bition (69). The AKT/FOXO1 pathway, a negative regulator of glu-
coneogenesis, decreased in the human fetal hepatocytes in which 
SIRT1 was inhibited, and gluconeogenesis increased (69).

Taken together, evidence from NHP, mouse, and rat models 
points to a maternal HFD programming offspring mitochondrial 
function, increasing offspring ROS and inflammation, and promot-
ing offspring hepatic lipid storage from the fetus into adulthood. 
These effects are exacerbated by maternal HFD during lactation and 
the offspring’s consumption of HFD after weaning and mediated, at 
least in part, by genetic and epigenetic factors, with epigenetic modi-
fications largely dependent on maternal dietary exposures (Figure 1).

Mitochondrial health and lipid metabolism  
in established NAFLD/NASH
While the development of NAFLD is no doubt multifactorial, 
mitochondrial structure and function have a central role in disease 
pathogenesis. While one of the most cited genes associated with 
NAFLD is PLAPN3, a triglyceride processing gene (70), in multi-
ple human studies (Table 1), static alterations of mitochondria-as-
sociated genes lay a foundation for mitochondrial health and are 

or insulin resistance (42). NHP dams on HFD also had higher plas-
ma omega-6/omega-3 FA ratios (43), reflecting higher arachidonic 
acid (omega-6) versus docosahexaenoic acid (omega-3) and eicos-
apentaenoic acid (omega-3). Not only is this detrimental to fetal 
brain development, higher concentrations of omega-6 FAs (spe-
cifically arachidonic acid) have been associated with NAFLD-re-
lated mitochondrial dysfunction involving downregulation of 
PPARA, a key transcriptional regulator of FA oxidation, as well as 
downstream target genes CPT1A and AOX, which are intricately 
involved in mitochondrial and peroxisomal FA oxidation (44). The 
fetal offspring of these HFD-fed NHP dams had a higher omega-6/
omega-3 ratio versus controls, which significantly correlated to 
maternal plasma omega-6/omega-3 ratio and maternal hyperinsu-
linemia (43). These fetuses had a higher amount of hepatic apop-
tosis (43). Hepatic apoptosis has been described in NASH (45) and 
is influenced by increased FA exposure that sensitizes hepatocytes 
to cytotoxicity mediated by TNF-related apoptosis-inducing ligand 
(TRAIL) (46). Changing the mother to a control diet in the subse-
quent pregnancy mitigated hepatic apoptosis in the fetus (43).

In mice, a similar relationship exists between maternal obesity 
and HFD and offspring risk for altered mitochondrial function and 
NAFLD. Adult offspring of HFD-fed mouse dams had NAFLD (47) 
and upregulated expression of SREBP1 (48). This was true for dams 
fed an HFD during gestation and/or lactation and was exacerbat-
ed when offspring were weaned to HFD themselves (48). Hepatic 
mitochondrial dysfunction was reported in offspring of HFD-fed 
mouse dams, with close ties to oxidative damage, lipid storage, 
altered methylation patterns, and altered mitochondria-related 
gene expression (including Ppara, Ppargc1b, and Fgf21) in offspring 
adolescence (49, 50) and adulthood (51, 52). As in the NHP mod-
el, the offspring immune system in mice is altered, contributing to 
the programmed pathogenesis in NAFLD (53).

In rats, evidence suggests that maternal HFD as well as fetal 
hypoxia programs offspring predisposition for NAFLD. During 
both pregnancy and lactation, maternal HFD resulted in reduced 
hepatic mitochondrial DNA (mtDNA) content and activity of 
PGC1α, with pronounced insulin resistance, hyperleptinemia, 
and hepatic fat accumulation in adult offspring maintained on 
HFD (54). Muscle glycolytic metabolism increased, FA oxidation 
with palmitoylcarnitine (C16) decreased, and hepatic triglyceride 
content increased in HFD-fed offspring of HFD-fed dams; these 
effects increased with age (55). Similar changes in hepatic fat con-
tent and oxidative stress occurred in offspring exposed to mater-
nal hypoxia with IUGR (56), particularly in HFD-fed rat offspring 
(57). Mechanistic links have been made with nutrient sensing, 
inflammatory response to oxidative stress, and mitochondria-re-
lated gene expression (58–60).

Epigenetic modifications in fetal  
programming of NAFLD
Epigenetic studies in mice show that exposure to maternal over-
nutrition is associated with hepatic DNA methylation (61) and his-
tone posttranslational modifications (62) that are first evident at 5 
weeks of life and persist after weaning to a low-fat diet even into 
adulthood. Many gene targets relate to mitochondrial metabolism 
and metabolic regulation. In humans, studies of epigenetic chang-
es in NAFLD are largely confined to adults but can still provide 
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thought to contribute strongly to NAFLD/NASH susceptibility. 
Genetic polymorphisms associated with NAFLD (Table 1, column 
1) are found largely in genes with a connection to mitochondrial 
function (Table 1, column 2). With this genetic foundation comes 
maternal in utero exposure and hepatic mitochondrial exposures 
postnatally, causing mitochondrial structure and function to 
devolve in offspring as the disease progresses (Figure 1). In one of 
the few published studies of its kind, an in-depth description of 
mitochondrial ultrastructure was conducted in liver biopsy spec-
imens from ten children aged 2–14 years with previously clinico-
pathologically diagnosed NASH (71). Besides steatosis and typi-
cal inflammatory, apoptotic, and fibrotic changes seen in NASH, 
investigators found megamitochondria, loss of mitochondrial 
cristae, and the presence of linear crystalline inclusions within 
the mitochondrial matrix causing mitochondrial deformations 
(71), suggestive of hepatic lipotoxicity. These inclusions have been 
reported in other inflammatory hepatic disorders (13, 14, 72, 73), 
and are correlated with oxidative stress (15, 74, 75). Foamy cyto-
plasm of hepatocytes was found (71), representing proliferation of 
smooth ER and glycogen accumulation. The perivascular space 
of Disse was dilated and contained activated hepatic stellate cells 
as well as collagen fiber bundles (71). Fat droplets have also been 
reported within the mitochondrial matrix (76), suggesting intact 
FA transport uncoupled from fat utilization for energy. These find-
ings are similar in adults with NAFLD/NASH, suggesting poten-
tially similar pathophysiology.

Obesity is associated with increased peripheral insulin resis-
tance and increased adipocyte lipolysis, which overload the 
hepatocyte mitochondria (77). During NAFLD, FA oxidation 
increases the amount of acetyl-CoA into the tricarboxylic acid 
(TCA) cycle, but when mitochondrial ETC capacity is exceeded 
despite an increase in mitochondrial biogenesis, inefficient res-
piration and increased oxidative stress occur that further damage 
mitochondria and oxidative capacity. Lipotoxicity, character-
ized by production of ROS, and related inflammation associated 
with mitochondrial dysfunction are well reported in NAFLD and 
NASH (78–80). Incomplete mitochondrial and peroxisomal lipid 
oxidation and/or ETC dysfunction lead to lipid peroxidation and 
oxidative damage (81–83). These changes might even precede lipid 
storage and insulin resistance. In the obese, hyperphagic Otsuka 
Long-Evans Tokushima Fatty (OLETF) rat model, researchers 
found significant hepatic mitochondrial dysfunction as measured 
by reduced hepatic CPT1 activity, FA oxidation, and cytochrome 
c protein content versus controls at 5 weeks of life (6). This find-
ing occurred in the setting of normal hepatic triglycerides and 
normal serum insulin and glucose. It was not until 8 weeks of age 
that hepatic triglycerides began to significantly accumulate, fol-
lowed by the development of insulin resistance at 13 weeks of age. 
NAFLD progressively worsened over the life of the OLETF ani-
mals. They developed hepatocyte ballooning, fibrosis, elevated 
transaminases, hepatic mitochondrial ultrastructural abnormal-
ities, and increased hepatic oxidative stress following the initial 
disease development between 5 and 13 weeks of age. Measures of 
hepatic mitochondrial content and function, including hydroxy-
acyl-CoA dehydrogenase enzyme activity, citrate synthase activ-
ity, and mitochondrial CPT1 content, progressively declined and 
were significantly reduced by 40 weeks of age (6).

Throughout NAFLD progression, mitochondria-specific pro-
cesses including FA oxidation, ketogenesis, ETC component activ-
ity, oxygen consumption, and mtDNA content change (81). FA 
oxidation and ketogenesis are increased in every stage of NAFLD 
progression (81, 84, 85), possibly as a result of stimulation of 
upstream signaling of leptin, PPARα, and PGC1α (86–89), worsen-
ing of hepatic insulin resistance (74), and/or upregulation of genes 
in the mitochondrial FA oxidation pathway (e.g., CPT1) (90, 91). 
Complex I and IV activity is typically unchanged or reduced and 
mtDNA content and damage increase as NAFLD worsens (81). 
Hepatic ATP levels are diminished (92) and oxidative capacity is 
limited, particularly in the setting of HFD (93).

Mitochondrial intermediary metabolism  
in NAFLD/NASH
Mitochondrial pathways beyond FA metabolism and the ETC play 
a role in the pathogenesis of NAFLD (Figure 2). In NAFLD, there is 
an increase in anaplerosis and cataplerosis, processes that replen-
ish and utilize intermediates of the TCA cycle, respectively (82, 
94, 95). Anaplerotic processes allow the hepatocyte to maintain 
coupling of glycolysis and/or FA oxidation with the mitochondrial 
ETC using molecules like amino acids to enter the TCA cycle and 
replenish its intermediates. Cataplerotic processes include gluco-
neogenesis, which utilizes TCA intermediates to make glucose. 
In adult NAFLD, a 50% higher rate of lipolysis and a 30% higher 
rate of gluconeogenesis are observed, with positive correlations 
between hepatic lipid content and both mitochondrial oxidative 
and anaplerotic fluxes (94). This is enhanced with hepatic insulin 
resistance (95). Mitochondrial oxidative metabolism is approxi-
mately 2-fold greater in those with NAFLD, providing a potential 
link between hepatic lipid content, oxidative stress, liver damage, 
and increased rates of anaplerosis and cataplerosis (94). This is 
mediated in part by phosphoenolpyruvate carboxykinase (PEP-
CK) (82), and is likely a compensatory mechanism to maximize 
mitochondrial respiratory capacity (96). Notably, genes and sub-
strates for the gluconeogenic pathway are upregulated in the liver 
of fetuses from obese NHP dams (41).

BCAA metabolism is modulated for anaplerosis in NAFLD. 
Ketoisocaproate is a catabolite of leucine, a BCAA metabolized in 
mitochondria, and a key biomarker of insulin resistance and meta-
bolic syndrome (25). Ketoisocaproate levels have been reported to 
be inversely related to the progression of NAFLD (97) and inverse-
ly related to alanine aminotransferase and γ-glutamyltransferase 
levels in obese adults (98). Ketoisocaproate decarboxylation is 
decreased in steatohepatitis (97, 99). The end products of BCAA 
catabolism directly supplement the TCA cycle in anaplerosis, a 
process necessary in the setting of incomplete β-oxidation in met-
abolic syndrome (26, 100). BCAAs have been positively associat-
ed with NAFLD and its associated progression in adults and ado-
lescents (101–103), with downregulation of gene expression in the 
BCAA catabolism pathway (101, 102). If anaplerosis is a compen-
satory mechanism in NAFLD (104), progression to NASH might 
occur in part when this mechanism fails to supply the TCA cycle 
with carbon substrate.

One-carbon metabolism is closely related to hepatic lipid 
accumulation. It is known to affect the development of NASH 
through the modulation of S-adenosylhomocysteine hydrolase; 
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increased concentration is associated with epigenetic modifi-
cation and transcriptional dysregulation (105, 106). One classic 
animal model of NASH, methionine and/or choline restriction 
(MCR), illustrates the importance of the one-carbon pathway in 
maintaining healthy levels of hepatic lipid content (107). MCR 
rats demonstrated altered mitochondrial function in ETC com-
plexes I and V, oxidative stress with increased ROS production, 
and increased hepatic fat content in the liver (108–110) without 
obesity. Diminished endogenous hepatic phosphatidylcholine in 
MCR plays a role in NAFLD pathogenesis, through both altered 
mitochondrial membrane fluidity (111) and inefficient formation 
of lipoproteins for FA export (112). Choline deficiency is related to 
depletion of cardiolipin (108, 109), which has been implicated in 
multiple aspects of mitochondrial dysfunction in NAFLD, includ-
ing oxidative stress, bioenergetics, and mitochondrial-induced 
apoptosis (113). The one-carbon pathway is closely linked to glu-
tathione metabolism (114), thereby implicating the major role of 
altered antioxidant activity in the progression of NAFLD to NASH. 
Exactly what role each pathway in one-carbon metabolism plays 
in the assembly and retention of hepatic triglycerides is not clear.

Mitochondrial oxidative stress and apoptosis  
in NAFLD/NASH
Enhanced FA oxidation without concomitant upregulation of 
ETC activity induces ROS overproduction upstream of cyto-
chrome c oxidase (115). Glutathione and superoxide dismutase 
mitigate mitochondrial oxidative stress but are reduced as 
NAFLD progresses to NASH (115). Notably, in the fetus, endoge-
nous antioxidant enzymes and placental transfer of antioxidant 
micronutrients or enzymes are limited until late in gestation in 
preparation for the oxidative stress associated with labor and 
birth (116). Oxidative stress promotes inflammation by releas-
ing cytokines like CXCR3, which actively inhibit mitochondrial 
function and dynamics (117). Influx of lipids also increases stress 
from reactive nitrogen species (RNS) generated by TNF-α–stim-
ulated CYP2E1 and inducible NO synthase (118, 119), which is 
central to the progression of NAFLD to NASH (120). Increases in 
RNS correspond to worsening hypoxic conditions and nitrosyla-
tion of mitochondrial proteins, resulting in uncoupled respi-
ration along with depressed active respiration, complex I and 
cytochrome c oxidase activity, and mitochondrial membrane 
potential (118, 119). Notably, placentas from obese, HFD-fed 
NHP dams showed evidence for hypoxia and increased cytokine 
production in the fetal circulation (41, 121).

The fire of this lipid oxidative stress has gasoline thrown onto 
it when individuals with NAFLD consume lipid and cholesterol. 
Ingestion of lipid in the setting of NAFLD worsens mitochondri-
al function, downregulates mitochondrial biogenesis, and pro-
motes hepatocellular apoptosis (122). Exposure to saturated lipids 
like palmitate promotes apoptosis through the mitochondrial B 
cell lymphoma-2 (BCL-2) pathway (a regulator of mitochondrial 
permeability), prevents the release of cytochrome c into the cyto-
sol, binds to apoptotic peptidase activating factor-1, and controls 
NLRP1 inflammasome activation (123–126). Saturated FAs and 
ceramides contribute to cellular damage in NAFLD, while mono-
unsaturated species and triglycerides might have a more protec-
tive role (127–129). Ceramides are the most directly damaging lip-

id molecules (130), with contributions to mitochondrial-mediated 
oxidative damage and inhibition of oxidative phosphorylation spe-
cific to complexes II and IV (131, 132).

Further clues to mechanisms in pediatric 
NAFLD/NASH
The majority of information regarding the origins of NAFLD 
in children is based on animal models. Histologically, pediatric 
NASH is often associated with a unique pattern of inflammation 
in the periportal region, suggesting a strong inflammatory compo-
nent (133–135). While the pathophysiologies of adult and pediatric 
NAFLD are not identical, evidence suggests there is an overlap (26). 
A recent study used metabolomics in infant cord blood to identify 
analytes associated with neonatal anthropometry, with the goal of 
finding biomarkers and candidate pathways in infant predisposi-
tion to obesity (136). Metabolites in energy production (TCA cycle 
intermediates) were associated with larger size at birth and high-
er levels of leptin and insulin-like growth factor-1, and the BCAA 
metabolite pattern was associated with larger birth size (136).

To date, no neonatal studies looking at prospective develop-
ment of NAFLD or testing biomarkers in the setting of increased 
neonatal hepatic lipid accumulation have been reported. An 
analysis of cord blood samples found little correlation between 
blood markers (including lipids, transaminases, and hormones 
like leptin and adiponectin) and the ability to predict NAFLD 
later in adolescence (137). Obese adolescents with NAFLD have 
increased levels of circulating BCAAs (103, 138). These biomark-
ers are increased in the setting of insulin resistance (25) and indi-
cate altered mitochondrial function in energy production in liver 
and skeletal muscle (26). Homocysteine and cysteine, one-car-
bon amino acids, are also elevated in the blood of children with 
NAFLD (138, 139). These biomarkers are linked to glutathione 
metabolism, and in NAFLD they are markers of oxidative stress 
typically mitigated by the mitochondria (138, 139). Small-mol-
ecule intermediary metabolites, including BCAAs and methi-
onine, were elevated in serum of obese versus nonobese adoles-
cents, as were FA oxidation intermediates and acylcarnitines, 
indicating incomplete β-oxidation (140, 141). Finally, fructose 
intake and metabolism also mediate development of pediatric 
NAFLD, with direct mitochondrial mechanisms. Hepatic dys-
function and hepatic lipid accumulation can occur when the liver 
is overloaded with fructose (142, 143). In pediatric NAFLD, fruc-
tose causes disruption of mitochondrial function, inflammation, 
and oxidative stress through increased fructokinase-mediated 
generation of fructose-1-phosphate and decreased concentra-
tions of cellular ATP (143–145). Recent evidence suggests that 
fructose ingestion affects mitochondria at a transcriptional level, 
via hypomethylation of mtDNA (146).

Taken together, peripheral and hepatocyte-specific insulin 
resistance, hepatic lipid accumulation, and inflammation are tied 
intimately with altered mitochondrial function in postnatal devel-
opment of NAFLD and its progression to NASH. These links occur 
in the context of exposures that impact mitochondrial function 
related to the maternal in utero environment, and/or transcrip-
tional pathways altered by epigenetic changes in mitochondria-re-
lated genes, in addition to known genetic polymorphisms in path-
ways related to NAFLD risk.
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effectively, both alone and in combination with vitamin E thera-
py (156–158). Metformin is becoming increasingly used in GDM 
(159), and it has direct effects on adult mitochondrial metabolism 
associated with NAFLD (82), but its long-term effects in the off-
spring remain unstudied. However, because metformin crosses 
the placenta and affects a number of mitochondrial and nutri-
ent-sensing mechanisms like AMPK, the mitochondrial ETC, 
and one-carbon metabolism, there could be untoward effects on 
offspring mitochondrial metabolism (159). Long-term follow-up 
studies are still needed.

Conclusions
In summary, the pathways to developmental programming of 
NAFLD suggest that the fetal liver, and hepatic mitochondrial 
function in particular, is uniquely susceptible to dysregulated fuel 
metabolism in the womb based on exposure to maternal obesi-
ty, diabetes, or WSD. In a fetal environment of low oxygen, low 
expression of mitochondria FA oxidation enzymes, and relatively 
low antioxidant activity, the fetal liver is particularly vulnerable to 
injury and poised for development of NAFLD. Increased hepat-
ic lipid stores, disrupted mitochondria, and elevated oxidative 
stress, along with increased de novo lipogenic and gluconeogenic 
gene expression and epigenetic modifications in the liver, suggest 
that these factors contribute to lifetime risk of NAFLD and likely 
contribute to the severity and early onset of NAFLD in children. 
Although many factors contribute to disease progression, altering 
mitochondrial health through diet, exercise, and, potentially, tar-
geted molecular therapies can help slow the rapid rise in pediatric 
NAFLD prevalence.
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Interventions to prevent altered mitochondrial 
function in NAFLD/NASH
Current guidelines enforce lifestyle modification (diet and exer-
cise) as the primary treatment for patients with established pedi-
atric NAFLD (4), with clinical trials under way focused on mod-
ulation of metabolic pathways, inflammatory cascades, and/or 
mechanisms impacting fibrosis (147). Going beyond correlations to 
address causation and mechanisms of human disease, particularly 
in infancy, has been difficult because of tremendous variation in 
environment, nutrition, and lifestyle factors. The fetal overnutrition 
hypothesis suggests that maternal fuels contributing to childhood 
NAFLD and obesity are in greater abundance in maternal obesity 
and maternal WSD consumption (148). In the setting of maternal 
obesity complicated by GDM, a lower-carbohydrate (and by default 
higher-fat) diet is often recommended. Offspring of mothers with 
GDM are at risk for NAFLD in the neonatal period and possibly 
beyond (7). New GDM interventions including dietary therapy with 
higher complex carbohydrates, but lower simple carbohydrates and 
fat, have been shown to improve maternal lipid profiles and mater-
nal adipocyte insulin sensitivity and to improve offspring adiposi-
ty (149). Studies are under way to see whether there is a beneficial 
effect on neonatal hepatic lipid storage. In children with NAFLD, 
breastfeeding during the infant period (150) and less refined carbo-
hydrate intake (151) were beneficial, suggesting possible program-
ming effects in infancy that last throughout life.

A typical WSD includes excessive amounts of simple sugars, 
saturated fats, and cholesterol, which are particularly proinflam-
matory. In humans, treatment with antiinflammatory omega-3 
polyunsaturated FAs mitigated oxidative stress and altered mito-
chondrial function in NAFLD (152). Likewise, our recent stud-
ies in mice demonstrated that a potent dietary antioxidant, pyr-
roloquinoline quinone, which is found in high concentration in 
human breast milk (153), prevented early microbial dysbiosis and 
improved hepatic macrophage mitochondrial oxidative metabo-
lism and NAFLD in adult offspring when administered to obese 
dams only during gestation and lactation (47). Fetal programming 
of NAFLD has also been prevented through maternal exercise. 
In HFD-fed rats, offspring from dams that had exercised had 
reduced body fat and were protected against HFD-induced hepat-
ic steatosis (154). This was associated with upregulated markers 
of hepatic mitochondrial biogenesis (PGC1α and TFAM) (154) and 
stimulation of FA oxidation and mitochondrial biogenesis (155). 
Metformin has been used to treat pediatric NAFLD safely and 
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